HIV-1 can integrate viral DNA into host cell chromosomes and establish a long-term stable latent viral reservoir, a major obstacle in curing HIV-1 infection. The reactivation of latent proviruses with latency-reversing agents (LRAs) is a prerequisite for the eradication of viral reservoirs. Previous reports have shown that tannic acid (TA) exerts several biological functions, including antioxidant and antitumor activities. Here, we identified a novel function of TA as a reactivator of HIV-1 latency. TA showed similar features to the HIV-1 transactivator of transcription (Tat) and was able to reactivate a larger number of proviruses from various integration sites. TA also showed a strong synergistic effect with other LRAs acting on different signaling pathways. Further studies revealed that the polycomb repressive complex 1 component, chromobox protein homolog 4 (CBX4), is specifically degraded by TA through ubiquitination. CBX4 is associated with the tri-methylation at lysine 27 of histone H3 (H3K27me3) which was enriched on HIV-1 long terminal repeat regions. The TA-induced CBX4 degradation decreased the H3K27me3 enrichment and subsequently enhanced the transcriptional activity of the integrated proviruses. These results suggest that TA is an efficient LRA aiming to a new target for HIV-1 latency, which could be developed to eradicate latent proviruses.IMPORTANCEHIV-1 remains a global health challenge, with its ability to integrate into the host genome and evade the effects of drugs. To overcome this obstacle, the "shock and kill" strategy was proposed, targeting the reactivation of latent HIV-1 for subsequent eradication through antiretroviral medication and immune system reinforcement. Here, we found a new reactivator for HIV-1 latency, tannic acid (TA), which can reactivate HIV-1 latency widely and deeply. Moreover, we demonstrated that TA could promote the interaction between the polycomb repressive complex 1 component CBX4 and the E3 ubiquitin ligase cullin 4A (CUL4A), resulting in CBX4 degradation through the ubiquitin-proteasome system. These events reduce H3K27me3 enrichment in the HIV-1 long terminal repeat region, thereby promoting HIV-1 transcription and ultimately reactivating HIV-1 latent infection. Our work may facilitate the identification of new latency-reversing agents and provide more theoretical evidence for the molecular mechanism of HIV-1 latency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1128/jvi.01173-24 | DOI Listing |
Epigenetics Chromatin
January 2025
Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.
Despite significant advances in HIV treatment, a definitive cure remains elusive. The first-in-human clinical trial of Excision BioTherapeutics' CRISPR-based HIV cure, EBT-101, demonstrated safety but failed to prevent viral rebound. These outcomes may result from the interplay of several factors.
View Article and Find Full Text PDFClin Chem
January 2025
Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium.
Background: Persistent latent reservoirs of intact HIV-1 proviruses, capable of rebounding despite suppressive antiretroviral therapy (ART), hinder efforts towards an HIV-1 cure. Hence, assays specifically quantifying intact proviruses are crucial to assess the impact of curative interventions. Two recent assays have been utilized in clinical trials: intact proviral DNA assay (IPDA) and quadruplex quantitative PCR (Q4PCR).
View Article and Find Full Text PDFJ Virol
December 2024
Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
bioRxiv
December 2024
Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA.
Disruption of HIV-1 Integrase (IN) interactions with the host-factor Lens Epithelium-Derived Growth Factor (LEDGF)/p75 leads to decreased, random integration, increased latent infection, and described here, accumulation of HIV-1 antisense RNA (asRNA). asRNA increase was observed following interruptions of IN-LEDGF/p75 interactions either through pharmacologic perturbations of IN-LEDGF/p75 by treatment with allosteric HIV-1 integrase inhibitors (ALLINIs) or in cell lines with LEDGF genetic knockout. Additionally, by impairing Tat-dependent HIV transcription, asRNA abundance markedly increases.
View Article and Find Full Text PDFThe mechanisms that regulate human immunodeficiency virus 1 (HIV-1) latency are not fully elucidated. We reported that an HIV-1 antisense transcript (AST) induces epigenetic modifications at the HIV-1 promoter causing a closed chromatin state that suppresses viral transcription. Here we show that ectopic expression of AST in CD4+ T-cells from people with HIV-1 under antiretroviral therapy blocks latency reversal in response to pharmacologic and T-cell receptor stimulation, enforcing transcriptional silencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!