Flexible Zn-air batteries (FZABs) hold significant promise in diverse application scenarios with high safety and compatibility yet are still impeded by byproduct formation and poor water retention. Here, the neutral hydrogel electrolyte GAHE is engineered by polymerizing acrylamide (AM) in a solution composed of cationic guar gum (CGG) and acetate salts to conquer the above challenges. The acetate anions (OAc) exert a pH near 7 to effectively inhibit the side reactions triggered by H. Meanwhile, the monodentate OAc ions in LiOAc have fast ion diffusion kinetics and form hydrogen bonds between the released carbonyl groups and HO to further suppress water activity for great side reaction prevention and water retention. Additionally, the polymerization strategy realizes a polymer with high mechanical properties and great electrochemical interfacial stability and further improves the water retention property with hydrophilic groups. Consequently, GAHE gives the FZABs a lifespan of 2050 h at room temperature and 2940 h at -35 °C. This work provides concepts for electrolyte design for water retention and side reaction inhibition properties of aqueous devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c15570 | DOI Listing |
Nano Lett
January 2025
Key Laboratory of Advanced Structural Materials, Ministry of Education, and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China.
The growing market for sodium-ion batteries has stimulated interest in research on Prussian blue-type cathode materials. Iron hexacyanoferrate (FeHCF) is considered a desirable Prussian blue-type cathode, but the incomplete electrochemical property of its low-spin iron sites hinders its further practical application. In this paper, carboxymethyl cellulose is demonstrated to have an appropriate binding energy through DFT calculations, synthesize Prussian blue in situ, balance Fe and water in FeHCF, and introduce Fe vacancies to activate low-spin Fe sites.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.
Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province 610031, China.
Chemical weathering of lithologies with high geochemical backgrounds such as black shale has been proposed to be a critical source for toxic elements in soil and water systems. However, mechanisms controlling the release, migration and enrichment of toxic elements during black shale weathering are poorly understood. This study utilized a suite of micro analytical techniques such as TESCAN integrated mineral analyzer (TIMA), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and electron micro-probe analysis (EMPA) to elucidate the intimate relationship between mineralogical transformations and elemental behaviors from profile scale to mineral scale.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China.
Moderate preoxidation is feasible for odor-producing algae treatments, usually requiring trade-offs in algal removal and integrity maintenance. However, dosing oxidants may cause internal oxidative homeostasis imbalances and secondary odorous metabolite responses, adding new trade-offs for moderate treatments. Peracetic acid (PAA)/Fe processes are promising strategies in moderate treatments and thus were applied to examine how to achieve the following three trade-offs: good algal removal, no odorant increases and no releases.
View Article and Find Full Text PDFWater Res
January 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China. Electronic address:
Hydroxylamine (HA) dosing is an effective strategy for promoting partial nitrification (PN); however, its impact on endogenous denitrification remains underexplored. In this study, long-term continuous HA dosing (1.4 mg/L) was introduced for over 110 days in a pilot-scale anaerobic/aerobic/anoxic (AOA) system treating municipal wastewater (66.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!