Constructing High-Performance Composite Epoxy Resins: Interfacial π-π Stacking Interactions-Driven Physical Rolling Behavior of Silica Microspheres.

Adv Mater

School of Materials and Chemistry and State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, 59, Middle Qinglong Avenue, Mianyang, 621010, P. R. China.

Published: December 2024

The intrinsic compromise between strength and toughness in composite epoxy resins significantly constrains their practical applications. In this study, a novel strategy is introduced, leveraging interfacial π-π stacking interactions to induce the "rolling behavior" of microsphere fillers, thereby facilitating efficient energy dissipation. This approach is corroborated through theoretical simulations and experimental validation. The resulting composite epoxy resin demonstrates an impressive 49.8% enhancement in strength and a remarkable 358.9% improvement in toughness compared to conventional epoxy resins, accompanied by substantially reduced hysteresis. Moreover, this system achieves reversible closed-loop recyclability and rapid repair capabilities. The preliminary demonstration of "force-temperature equivalence" further establishes a novel pathway for the design of high-performance composite epoxy materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202415485DOI Listing

Publication Analysis

Top Keywords

composite epoxy
16
epoxy resins
12
high-performance composite
8
interfacial π-π
8
π-π stacking
8
epoxy
5
constructing high-performance
4
composite
4
resins interfacial
4
stacking interactions-driven
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!