In this article, we provide an overview of hydrogen storage materials, taking our previous results as examples. Towards the end of the paper, we present a case study in order to highlight the effects of substitutional alloying, compositional additives, and nanostructuring on the hydrogen sorption properties of magnesium-based intermetallics. Specifically, partial substitution of Mg by Li and d-elements by p-elements leads to structural changes, inducing disorder and the formation of high-entropy alloys. Our approach showcases the methodology to enhance the H2-capacity and to provide a positive boost to the H2-storage performance, including lower temperatures of H2 desorption, better thermodynamics and kinetics, lower temperatures of hydrogen uptake/ release for Metal-Hydride Hydrogen Storage (MHHS) systems and higher capacity of anodes for Metal-Hydride batteries (MHB) together with lower prices of raw materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2533/chimia.2024.869 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!