The endoplasmic reticulum (ER) is crucial for maintaining calcium balance, lipid biosynthesis, and protein folding. Disruptions in ER homeostasis, often due to the accumulation of misfolded or unfolded proteins, lead to ER stress, which plays a significant role in various diseases, especially cancer. Urological cancers, which account for high male mortality worldwide, pose a persistent challenge due to their incurability and tendency to develop drug resistance. Among the numerous dysregulated biological mechanisms, ER stress is a key factor in the progression and treatment response of these cancers. This review highlights the dual role of aberrant ER stress activation in urologic cancers, affecting both tumor growth and therapeutic outcomes. While ER stress can support tumor growth through pro-survival autophagy, it primarily inhibits cancer progression via apoptosis and pro-death autophagy. Interestingly, ER stress can paradoxically aid cancer progression through mechanisms such as exosome-mediated immune evasion. Additionally, the review examines how pharmacological interventions, particularly with phytochemicals, can stimulate ER stress-mediated tumor suppression. Key regulators, including PERK, IRE1α, and ATF6, are discussed for their roles in upregulating CHOP levels and triggering apoptosis. In conclusion, a deeper understanding of ER stress in urological cancers not only clarifies the complex interactions between cellular stress and cancer progression but also provides new opportunities for innovative therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647052PMC
http://dx.doi.org/10.1002/ccs3.12054DOI Listing

Publication Analysis

Top Keywords

urological cancers
12
cancer progression
12
dual role
8
endoplasmic reticulum
8
stress
8
stress urological
8
tumor growth
8
cancers
5
progression
5
exploring dual
4

Similar Publications

Objective: To evaluate the postoperative complications and prognosis of renal cell carcinoma (RCC) in a solitary kidney after irreversible electroporation (IRE).

Materials And Methods: A total of 8 patients with 9 RCCs in a solitary kidney treated with computed tomography (CT)-guided IRE from February 2017 to September 2020 were retrospectively analyzed. Follow-up included contrast-enhanced CT or magnetic resonance imaging examinations at 1 day, 1 week, 1 month, 3 months, 6 months, 12 months, and each year after IRE and the evaluation of the incidence of postoperative complications, renal function changes, local tumor recurrence, and metastasis.

View Article and Find Full Text PDF

Purpose: To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.

Methods: A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score.

View Article and Find Full Text PDF

Purpose: Surgery remains the cornerstone of localized renal cell carcinoma (RCC) care. Pembrolizumab has recently been recommended as a standard of care for RCC patients who are at high risk of recurrence. Data regarding the efficacy of ICIs either alone or in combination with ICIs or VEGF TKIs for VTT shrinkage are scarce.

View Article and Find Full Text PDF

The development of noninvasive methods for bladder cancer identification remains a critical clinical need. Recent studies have shown that atomic force microscopy (AFM), combined with pattern recognition machine learning, can detect bladder cancer by analyzing cells extracted from urine. However, these promising findings were limited by a relatively small patient cohort, resulting in modest statistical significance.

View Article and Find Full Text PDF

Purpose: To create a computer-aided prediction (CAP) system to predict Wilms tumor (WT) responsiveness to preoperative chemotherapy (PC) using pre-therapy contrast-enhanced computed tomography (CECT).

Materials And Methods: A single-center database was reviewed for children <18 years diagnosed with WT and received PC between 2001 and 2021. Patients were excluded if pre- and post-PC CECT were not retrievable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!