In recent years, the exploration of topological states within two-dimensional materials has emerged as a compelling focus, complementing their three-dimensional counterparts. Through theoretical calculations, we unveil the exceptional topological state in the monolayer lithium hydrosulfide, where an ideal hourglass nodal loop is identified. Notably, this nodal loop is characterized by only four bands, representing the simplest configuration for realizing hourglass dispersion. We provide detailed symmetry arguments alongside model calculations to elucidate the formation mechanism of the nodal loop and its corresponding hourglass dispersion. Moreover, the associated edge states are not only well-separated from the bulk band projection but also persist consistently throughout the Brillouin zone. Due to the lightweight constitutive elements of this material, both the hourglass dispersion and the edge states remain robust even in the presence of spin-orbit coupling. To enhance its practical applicability, we have evaluated various mechanical parameters, analyzing their anisotropic behaviors. Furthermore, we examined the material's response to strain conditions under both compressive and tensile stress, uncovering distinct variations in energy, size, and the hourglass dispersion of the nodal loop. Overall, the hourglass nodal loop state explored in this study, along with the proposed material candidate, provides a strong foundation for future experimental investigations. This research potentially paves the way for significant advancements within this emerging field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650700 | PMC |
http://dx.doi.org/10.3389/fchem.2024.1500989 | DOI Listing |
Front Chem
December 2024
The Engineering and Technology Research Center of Myocardial Prevention and Rehabilitation, The Fourth Medical College of Harbin Medical University, Harbin, China.
In recent years, the exploration of topological states within two-dimensional materials has emerged as a compelling focus, complementing their three-dimensional counterparts. Through theoretical calculations, we unveil the exceptional topological state in the monolayer lithium hydrosulfide, where an ideal hourglass nodal loop is identified. Notably, this nodal loop is characterized by only four bands, representing the simplest configuration for realizing hourglass dispersion.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Department of Electronic Science and Engineering, Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China.
Realizing novel two-dimensional (2D) magnetic states would accelerate the development of advanced spintronic devices and the understandings of 2D magnetic physics. In this paper, we have examined the magnetic and electronic properties of 20 dynamically stable and exfoliable MXO (M = Ti-Ni; X = S-Te; excluding CoTeO). It has been unveiled that [XO]-and [M]-crystal fields govern the M-3orbital splittings in MXO.
View Article and Find Full Text PDFCureus
October 2024
Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, USA.
J Saudi Heart Assoc
October 2024
Department of Cardiac Sciences, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
Nat Commun
September 2024
Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!