Proton therapy is a cancer treatment method that uses high-energy proton beams to target and destroy cancer cells. In recent years, the use of proton therapy in cancer treatment has increased due to its advantages over traditional radiation methods, such as higher accuracy and reduced damage to healthy tissues. For accurate planning and delivery of proton therapy, advanced software tools are needed to model and simulate the interaction between the proton beam and the patient's body. One of these tools is the Monte Carlo simulation software called Geant4, which provides accurate modeling of physical processes during radiation therapy. The purpose of this study is to investigate the effectiveness of the Geant4 toolbox in proton therapy in the conducted research. This review article searched for published articles between 2002 and 2023 in reputable international databases including Scopus, PubMed, Scholar, Google Web of Science, and ScienceDirect. Geant4 simulations are reliable and accurate and can be used to optimize and evaluate the performance of proton therapy systems. Obtaining some data from experiments carried out in the real world is very effective. This makes it easy to know how close the values obtained from simulations are to the behavior of ions in reality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651386 | PMC |
http://dx.doi.org/10.4103/jmss.jmss_49_23 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!