Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1750743X.2024.2442899 | DOI Listing |
Biotechnol J
December 2024
Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation.
View Article and Find Full Text PDFImmunotherapy
December 2024
Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, USA.
IEEE Trans Ultrason Ferroelectr Freq Control
October 2024
Nanodroplets are phase-changing agents that have shown great potential for ultrasound applications. When ultrasound is applied, nanodroplets can undergo a phase transition into gas bubbles, enabling cavitation that can be used to reduce the pressure threshold required for mechanical ablation of tissues. Effective tissue fractionation depends on precise vaporization to achieve uniform and predictable bubble formation.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Urology, University of Washington, Seattle, 98195, USA.
Histotripsy is a noninvasive focused ultrasound therapy that mechanically fractionates tissue to create well-defined lesions. In a previous clinical pilot trial to treat benign prostatic hyperplasia (BPH), histotripsy did not result in consistent objective improvements in symptoms, potentially because of the fibrotic and mechanically tough nature of this tissue. In this study, we aimed to identify the dosage required to homogenize BPH tissue by different histotripsy modalities, including boiling histotripsy (BH) and cavitation histotripsy (CH).
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2024
Phase-change nanodroplets (PCNDs) are customizable and controllable theranostic agents of particular interest in extravascular therapies such as drug delivery and histotripsy. High-bulk-boiling-point (HBP) PCNDs are preferred for their enhanced thermal stability under physiological temperature to achieve on-demand therapeutic effects on target sites-mainly in tumor tissue. However, the behavioral patterns of high-concentration, heterogeneously distributed HBP PCNDs in vivo have rarely been explored-the foci of PCND-related therapies mostly fall on the final therapeutic effect rather than the detailed behaviors of PCNDs, which may hamper the development and improvement of in vivo treatments with PCNDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!