Electrochemically Controlled Deposition of Low-Crystalline Covalent Organic Frameworks on Nanocarbon Electrode Toward Metal-Free Oxygen Reduction Electrocatalyst.

Small

Department of Chemical Science and Engineering, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.

Published: December 2024

Morphology-controlled synthesis of covalent organic frameworks (COFs) offers significant potential for electrochemical applications. However, controlling the deposition of nanometer-scale COFs on carbon supports remains challenging due to the need for a slow COF generation rate and the dispersion of carbon supports in liquid-phase synthesis. In this study, nanometer-scale COF/carbon composites are fabricated using electrochemically generated acid (EGA) to assist in the formation of imine-type COFs, which are then deposited onto pre-cast nanocarbon supports on an electrode. A monomer combination of tri(4-aminophenyl)-1,3,5-triazine and 2,5-dimethoxybenzene-1,4-dicarboxaldehyde is utilized due to their suitable oxidation potentials, with 1,2-diphenylhydrazine serving as the EGA source. Through proton generation driven by electrolysis conditions, controlled COF formation is achieved at the single nanometer scale, ranging from 6 to 30 nm, on various nanocarbon supports. The COF/carbon electrode is evaluated as an oxygen reduction reaction (ORR) electrocatalyst, demonstrating superior performance compared to other COF-based electrode materials containing the 1,3,5-triazine moiety. The findings experimentally validate the efficacy of the EGA-assisted COF deposition method for nanostructure construction and its ability to enhance the properties of COF-based electrodes through morphology tuning.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202410475DOI Listing

Publication Analysis

Top Keywords

covalent organic
8
organic frameworks
8
oxygen reduction
8
carbon supports
8
nanocarbon supports
8
electrochemically controlled
4
controlled deposition
4
deposition low-crystalline
4
low-crystalline covalent
4
frameworks nanocarbon
4

Similar Publications

In Situ Growth of Covalent Organic Frameworks on Carbon Nanotubes for High-Performance Potassium-Ion Batteries.

Angew Chem Int Ed Engl

December 2024

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups.

View Article and Find Full Text PDF

1D Covalent Organic Frameworks with Tunable Dual-Cobalt Synergistic Sites for Efficient CO Photoreduction.

Macromol Rapid Commun

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.

Diatomic catalysts enhance photocatalytic CO reduction through synergistic effects. However, precisely regulating the distance between two catalytic centers to achieve synergistic catalysis poses significant challenges. In this study, a series of one-dimensional (1D) covalent organic frameworks (COFs) are designed with adjustable micropores to facilitate efficient CO photoreduction.

View Article and Find Full Text PDF

A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.

View Article and Find Full Text PDF

Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge.

View Article and Find Full Text PDF

Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine was employed as the secondary building block to fabricate a "hybrid" hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!