Dissecting the Predictors of Cyber-Aggression Through an Explainable Machine Learning Model.

Aggress Behav

Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.

Published: January 2025

The general aggression model (GAM) suggests that cyber-aggression stems from individual characteristics and situational contexts. Previous studies have focused on limited factors using linear models, leading to oversimplified predictions. This study used the light gradient boosting machine (LightGBM) to identify and rank the importance of various risk and protective factors in cyber-aggression. The SHAP (SHapley Additive exPlanations) technique estimated each variable's predictive effects, and two-dimensional partial dependence (PD) Plots examined interactions among predictors. Among 30 potential factors, the top five were attitudes toward violence, revenge motivation, anti-bullying attitudes, moral disengagement, and anger rumination. PD analysis showed significant interactions between protective factors (anti-bullying attitudes and moral reasoning) and risk factors (attitudes toward violence, revenge motivation, moral disengagement, and anger rumination). High scores on protective factors mitigated the impact of risk factors on cyber-aggression. These findings support and expand GAM, offering implications for reducing cyber-aggression among Chinese college students.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ab.70013DOI Listing

Publication Analysis

Top Keywords

protective factors
12
factors cyber-aggression
8
attitudes violence
8
violence revenge
8
revenge motivation
8
anti-bullying attitudes
8
attitudes moral
8
moral disengagement
8
disengagement anger
8
anger rumination
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!