We use advances in the formalism of boost agnostic passive fluids to constrain transport in polar active fluids, which are subsequently described by the Toner-Tu equations. Acknowledging that the system fundamentally breaks boost symmetry, we compel what were previously entirely phenomenological parameters in the Toner-Tu model to satisfy precise relationships among themselves. Consequently, we propose a thermodynamic argument to determine the scalings of the transport coefficients under dynamical renormalization group flow given that the scaling of the noise correlator is exact, as has been supported numerically. These scalings perfectly agree with the results of recent state-of-the-art numerical simulation and experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.110.054108 | DOI Listing |
Nat Commun
January 2025
School of Physical Science and Technology, Yangzhou University, Yangzhou, China.
The latest climate models project widely varying magnitudes of future extreme precipitation changes, thus impeding effective adaptation planning. Many observational constraints have been proposed to reduce the uncertainty of these projections at global to sub-continental scales, but adaptation generally requires detailed, local scale information. Here, we present a temperature-based adaptative emergent constraint strategy combined with data aggregation that reduces the error variance of projected end-of-century changes in annual extremes of daily precipitation under a high emissions scenario by >20% across most areas of the world.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Buck Institute for Research on Aging, Novato, CA, United States of America. Electronic address:
To professional bioenergeticists, the thermodynamic and kinetic constraints on mitochondrial function are self-evident. It is therefore profoundly concerning that high-profile cell biology papers continue to appear containing fundamental bioenergetic errors that appear to have evaded the scrutiny of the principal investigator, co-authors, editors and, apparently, at least some of the referees. The problem is not new, and seems to stem from a perception that bioenergetics is a 'difficult' subject, both at undergraduate level, if it is taught in any depth, and in research, where cell biologists are faced with biophysical concepts such as protonmotive force, ion flux, redox potential and Gibbs free energy.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States.
Ion atmospheres play a critical role in modulating the interactions between charged components in solutions. However, a detailed description of the nature of ion atmospheres remains elusive. Here, we use Kirkwood-Buff theory, an exact theory of solution mixtures, together with a series of local and bulk electroneutrality constraints to provide relationships between all the net ion-ion distributions in bulk electrolyte mixtures.
View Article and Find Full Text PDFEnvironmental temperature dictates the developmental pace of poikilothermic animals. In , slower development at lower temperatures results in higher brain connectivity, but the generality of such scaling across temperatures and brain regions and its impact on function are unclear. Here, we show that brain connectivity scales continuously across temperatures, in agreement with a first-principle model that postulates different metabolic constraints for the growth of the brain and the organism.
View Article and Find Full Text PDFCommun Phys
December 2024
Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!