AI Article Synopsis

  • The study explored the gut mycobiota (fungi) of three snub-nosed monkey species using advanced sequencing techniques, revealing that R. bieti had greater gut mycobiota diversity compared to R. roxellana and R. strykeri.
  • Beta diversity suggested R. roxellana and R. bieti had similar diets, while core mycobiota shared among the species hinted at common feeding habits influenced by their environments.
  • Certain fungi, notably lichen parasites, posed threats to both the monkeys and their food sources, emphasizing the connection between gut mycobiota, diet, and environmental factors.

Article Abstract

Gut mycobiota are part of the gut microbiome, typically derived from the host diet and living environment. In this study, we examined the gut mycobiota of three snub-nosed monkeys: Rhinopithecus roxellana, R. bieti, and R. strykeri using next-generation amplicon sequencing targeting the fungal internal transcribed spacer. The alpha diversity indexes of gut mycobiota in R. bieti were significantly higher than R. roxellana and R. strykeri, the beta diversity indicated that R. roxellana and R. bieti had more similar feeding habits. Core mycobiota demonstrated commonalities among the three species and potentially associated with feeding habits. Mycobiota displaying significant differences exhibited the respective characteristics of the host, likely associated with the hosts' living environment. Among them, animal and plant pathogenic fungi and lichen parasites are potential threats to the survival of snub-nosed monkeys for their pathogenicity to both monkeys and their food plants. Functionally, fungal trophic modes and functional guilds revealed a strong association between gut mycobiota and host diet. We found a higher abundance and more significant correlations with lichen parasitic fungi in R. strykeri than the other two species, indicating potential threats to their foods. Accordingly, this study revealed the basic structures of gut mycobiota of three wild Rhinopithecus species and highlighted the associations between gut mycobiota and their feeding habits and living environments. Furthermore, due to the close connection between fungi and the environment, animals could ingest fungi from their diet; thus, we speculate that gut mycobiota may serve a role in environmental monitoring for wildlife.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1749-4877.12932DOI Listing

Publication Analysis

Top Keywords

gut mycobiota
32
mycobiota three
12
feeding habits
12
gut
9
mycobiota
9
rhinopithecus species
8
host diet
8
living environment
8
snub-nosed monkeys
8
roxellana bieti
8

Similar Publications

The intestinal fungus Aspergillus tubingensis promotes polycystic ovary syndrome through a secondary metabolite.

Cell Host Microbe

January 2025

State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China. Electronic address:

Polycystic ovary syndrome (PCOS) affects 6%-10% of women of reproductive age and is known to be associated with disruptions in the gut bacteria. However, the role of the gut mycobiota in PCOS pathology remains unclear. Using culture-dependent and internal transcribed spacer 2 (ITS2)-sequencing methods, we discovered an enrichment of the gut-colonizable fungus Aspergillus tubingensis in 226 individuals, with or without PCOS, from 3 different geographical areas within China.

View Article and Find Full Text PDF

Profile of intestinal fungal microbiota in acute pancreatitis patients and healthy individuals.

Gut Pathog

January 2025

Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, China.

Objective: The gut is involved in the development of acute pancreatitis (AP). Increased focus is being given to the role of gut microbiota in the pathogenesis of AP. Nevertheless, there is currently no available evidence regarding the composition of fungal microorganisms in the intestines of patients with AP.

View Article and Find Full Text PDF

Evidence suggests that the gut microbiome may play a role in multiple sclerosis (MS). However, the majority of the studies have focused on gut bacterial communities; none have examined the fungal microbiota (mycobiota) in persons with pediatric-onset multiple sclerosis (POMS). We examined the gut mycobiota in persons with and without POMS through a cross-sectional examination of the gut mycobiota from 46 participants' stool samples (three groups: 18 POMS, 13 acquired monophasic demyelinating syndromes [monoADS], and 15 unaffected controls).

View Article and Find Full Text PDF

The gut microbiome plays a key role in the pathogenesis and disease activity of inflammatory bowel disease (IBD). While research has focused on the bacterial microbiome, recent studies have shifted towards host genetics and host-fungal interactions. The mycobiota is a vital component of the gastrointestinal microbial community and plays a significant role in immune regulation.

View Article and Find Full Text PDF

The bacterial microbiome of the ant has been well characterized across body regions and maturation levels. However, potential effects of entomopathogens on the gut microbiome, and the fungal communities therein, are yet to be assessed. Additionally, the mycobiome remains often overlooked despite playing a vital role in gut ecology with potential implications for health and infection outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!