While establishing symbiotic relationships with nitrogen-fixing soil bacteria certain legumes produce nodule-specific cysteine rich peptides. These peptides turn the bacteria into terminally differentiated non-replicative bacteroids. Here, we discuss the properties, essentiality, emerging clinical and agricultural applications, and the need to study the detailed mechanism of action of these peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2024.11.012DOI Listing

Publication Analysis

Top Keywords

ncr peptides
4
peptides plant-bacterial
4
plant-bacterial symbiosis
4
symbiosis applications
4
applications establishing
4
establishing symbiotic
4
symbiotic relationships
4
relationships nitrogen-fixing
4
nitrogen-fixing soil
4
soil bacteria
4

Similar Publications

Inhibin, β, which is also known as INHBA, encodes a protein that belongs to the Transforming Growth factor-β (TGF-β) superfamily, which plays a pivotal role in cancer. Gastrointestinal tract (GI tract) cancer refers to the cancers that develop in the colon, liver, esophagus, stomach, rectum, pancreas, and bile ducts of the digestive system. The role of INHBA in all GI tract cancers remains understudied.

View Article and Find Full Text PDF

A microaerobically induced small heat shock protein contributes to / symbiosis and interacts with a wide range of bacteroid proteins.

Appl Environ Microbiol

December 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain.

During the establishment of the symbiosis with legume plants, rhizobia are exposed to hostile physical and chemical microenvironments to which adaptations are required. Stress response proteins including small heat shock proteins (sHSPs) were previously shown to be differentially regulated in bacteroids induced by bv. viciae UPM791 in different hosts.

View Article and Find Full Text PDF

While establishing symbiotic relationships with nitrogen-fixing soil bacteria certain legumes produce nodule-specific cysteine rich peptides. These peptides turn the bacteria into terminally differentiated non-replicative bacteroids. Here, we discuss the properties, essentiality, emerging clinical and agricultural applications, and the need to study the detailed mechanism of action of these peptides.

View Article and Find Full Text PDF

Small cyclic dipeptide produced by with anti-biofilm properties against biofilm.

Biofilm

December 2024

Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, Greater Noida, 201314, India.

Article Synopsis
  • - The oral cavity is home to a diverse range of bacteria known as the oral microbiome, which plays a crucial role in maintaining oral health, but imbalances can lead to diseases like dental caries, gingivitis, and periodontitis.
  • - The study investigated a specific metabolite extracted from a bacterial strain, which showed the ability to inhibit biofilm formation in a dose-dependent manner, effectively reducing biofilm thickness as observed through confocal microscopy.
  • - Further analysis identified the compound as a small cyclic peptide, cyclo (-L-Leu-L-Pro), and it was found to disrupt biofilms by altering the expression of key genes involved in biofilm formation.
View Article and Find Full Text PDF
Article Synopsis
  • Small antifungal peptides known as NCR peptides, particularly in legumes like chickpeas, show potential as biofungicides due to their ability to act against fungal pathogens through different mechanisms of action (MoA).
  • The study focused on chickpea NCR13, which can form multiple disulfide bonds; two variants of this peptide, NCR13_PFV1 and NCR13_PFV2, were created, showing different structures and antifungal potency despite having the same amino acid sequence.
  • NCR13_PFV1 was found to be more effective in killing fungal cells and inhibiting protein translation, resulting in better disease control in plants sprayed with it, emphasizing the importance of disulfide bond configuration in peptide
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!