Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human activity exposes organisms in marine ecosystems to numerous stressors, including rising seawater temperatures and antibiotic contamination. The present study investigated the impacts of environmentally relevant concentrations of the fluoroquinolone (FQ) antibiotic enrofloxacin (ENR), specifically 5 and 500 ng/L, in Mytilus galloprovincialis under ambient (20 °C) and predicted warming (25 °C) conditions after 14 days of exposure, followed by a 14-day recovery period in the absence of ENR. The chemical analyses revealed significant variability in bioaccumulation in mussel tissues. Physiological assessments showed decreased respiration and filtration rates post-exposure, with temperature-dependent recovery dynamics. Biochemical parameters indicated an increased metabolic capacity and energy reserves at higher temperatures, with a significant increase in energy expenditure. Notably, ENR induced significant DNA single-strand breaks in mussel gills and digestive glands, with temperature influencing DNA repair mechanisms. The combination of ENR and elevated temperatures exhibited additive or even synergistic effects on certain physiological and biochemical parameters, indicating a higher risk when these stressors act together. The Indipendent Action model (IA) results highlighted that the majority of observed effects in combined stressors were consistent with predicted values, with notable synergistic interactions in energy reserves and antagonistic responses in metabolic and physiological functions. These findings suggest that both stressors, acting alone and especially in combination, may pose a risk to marine bivalves such as mussels. Further research is needed to assess the impacts of FQs and ocean warming on ecosystem stability and non-target organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.125500 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!