Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks effective therapeutic options. Hypoxia and immune escape are critical factors that contribute to the progression of and resistance to therapy in patients with TNBC. Nevertheless, few studies have comprehensively analyzed hypoxia and immune escape in patients with TNBC. This study aimed to examine the expression of hypoxia- and immune escape-related genes in TNBC and their influence on prognosis. TNBC datasets were downloaded and processed from The Cancer Genome Atlas and Gene Expression Omnibus. Differential expression analysis identified 4949 differentially expressed genes, between TNBC and normal tissues. The intersection yielded 116 hypoxia- and immune escape-related differentially expressed genes (H&IERDEGs), including KIF4A, BIRC5, and BUB1. Enrichment analyses indicated that H&IERDEGs were significantly enriched in biological processes, including cell chemotaxis, leukocyte migration, and cytokine-cytokine receptor interaction. Subsequently, weighted gene co-expression network analysis identified 43 module genes that were found to define two TNBC subtypes. We constructed a prognostic risk model consisting of eight signature genes, which demonstrated a high predictive performance to predict the overall survival (OS) of patients with TNBC with an area under the curve (AUC) exceeding 0.9 at 1 year survival. This indicates that the model effectively differentiates between outcomes, reflecting its robust performance. This study investigated the roles and potential mechanisms of hypoxia- and immune escape-related genes in TNBC and constructed a prognostic risk model with a high predictive performance. These findings offer novel molecular markers and potential therapeutic targets for TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113810DOI Listing

Publication Analysis

Top Keywords

hypoxia- immune
16
immune escape-related
16
escape-related genes
12
breast cancer
12
patients tnbc
12
genes tnbc
12
tnbc
10
triple-negative breast
8
hypoxia immune
8
immune escape
8

Similar Publications

Background: Tumor-specific antigens play an important role in dendritic cell (DC)-based immunotherapy. The acquisition of tumor-specific antigens, which are essential for DC-based immunotherapy, poses a significant challenge. This study aimed to explore the efficacy of hypoxia inducible factor-1α (HIF-1α) overexpression tumor antigens in DC-based immunotherapy.

View Article and Find Full Text PDF

ATP synthase inhibitory factor 1 (ATPIF1), a key modulator of ATP synthase complex activity, has been implicated in various physiological and pathological processes. While its role is established in conditions such as hypoxia, ischemia-reperfusion injury, apoptosis, and cancer, its involvement remains elusive in peripheral nerve regeneration. Leveraging ATPIF1 knockout transgenic mice, this study reveals that the absence of ATPIF1 impedes neural structural reconstruction, leading to delayed sensory and functional recovery.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor, and the development of accurate predictive models for prognosis and drug sensitivity remains challenging.

Methods: We integrated laboratory data and public cohorts to conduct a multi-omics analysis of HCC, which included bulk RNA sequencing, proteomic analysis, single-cell RNA sequencing (scRNA-seq), spatial transcriptomics sequencing (ST-seq), and genome sequencing. We constructed a tumor purity (TP) and tumor microenvironment (TME) prognostic risk model.

View Article and Find Full Text PDF

Background: Hypoxia in the tumor microenvironment (TME) plays a pivotal role in the progression and prognosis of colorectal cancer (CRC). However, effective methods for assessing TME hypoxia remain lacking. This study aims to develop a novel hypoxia-related prognostic score (HPS) based on hypoxia-associated genes to improve CRC prognostication and inform treatment strategies.

View Article and Find Full Text PDF

Assembly of a biomimetic copper-based nanocomplex for alleviating hypoxia to enhance cuproptosis against osteosarcoma and lung metastasis.

Acta Biomater

December 2024

Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China. Electronic address:

Osteosarcoma tissues demonstrated elevated expression of proteins (FDX1 and DLAT) integral to cuproptosis in our preliminary study, indicating the potential effectiveness of anti-tumor strategies predicated on this process. Nevertheless, the overexpression of copper export proteins and the challenge of copper ion penetration may contribute to insufficient local copper ion concentration for inducing cuproptosis. Herein, we engineered a biomimetic copper-elesclomol-polyphenol network for the efficient delivery of copper ions and the copper ionophore elesclomol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!