A novel ratiometric electrochemical aptasensor based on graphene quantum dots/Cu-MOF nanocomposite for the on-site determination of Staphylococcus aureus.

J Hazard Mater

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China. Electronic address:

Published: December 2024

The sensitive detection of Staphylococcus aureus (S. aureus) holds great practical importance for ensuring public health and food safety. In this study, a sensitivity and stability ratiometric electrochemical aptasensor using graphene quantum dots/[Cu (benzotriazole-5-COO) (benzotriazole-5-COOH) (μ-Cl) (μ-OH)-(HO)]·3 HO nanocomposite (GQDs/Cu-MOF) was constructed for S. aureus detection. The GQDs enhanced the sensitivity of the electrochemical aptasensor due to their excellent conductivity and provided stability through their abundant carboxyl groups. The Cu-MOF, possessing electrical activity, not only enhanced the performance of the electrochemical aptasensor but also served as a signal label. The single-stranded DNA1 (S1) was immobilized on the surface of a GQDs/Cu-MOF/screen-printed carbon electrode (S1/GQDs/Cu-MOF/SPCE) as the sensing interface. Subsequently, the S1/GQDs/Cu-MOF/SPCE was hybridized with the probe DNA-ferrocene (S2-Fc), resulting in the generation of electrochemical signals from Cu-MOF (I) and S2-ferrocene (I) within the system. However, the electron transfer performance of DNA at the sensing interface was compromised, leading to a reduction in the I. When S. aureus was present in the system, S2-Fc reacted with it and detached from the sensing surface, resulting in a gradual decrease in I and an increase in I. Then a ratiometric electrochemical aptasensor was established for S. aureus detection with remarkable sensitivity (0.97 CFU·mL), excellent stability, and a broad linear range. Furthermore, the aptasensor was successfully applied to detect S. aureus in tap water, milk, Lonicera japonica, urine, and Zhangjiang River. Additionally, this aptasensor design can be adapted for the detection of other foodborne pathogens, which indicates that the design scheme of the aptasensor has good universality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136845DOI Listing

Publication Analysis

Top Keywords

electrochemical aptasensor
20
ratiometric electrochemical
12
aptasensor
8
graphene quantum
8
staphylococcus aureus
8
aureus detection
8
sensing interface
8
aureus
7
electrochemical
6
novel ratiometric
4

Similar Publications

Recent progress, challenges, and future perspectives of electrochemical biosensing of aflatoxins.

Mikrochim Acta

December 2024

Department of Chemistry, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh, 522302, India.

Aflatoxins (AFs), produced by fungi, are highly hazardous and classified as mycotoxins. Controlling their levels is of significant concern. This group consists of 20 fungal metabolites, all structurally derived from difuranocoumarin.

View Article and Find Full Text PDF

A novel ratiometric electrochemical aptasensor based on graphene quantum dots/Cu-MOF nanocomposite for the on-site determination of Staphylococcus aureus.

J Hazard Mater

December 2024

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China. Electronic address:

The sensitive detection of Staphylococcus aureus (S. aureus) holds great practical importance for ensuring public health and food safety. In this study, a sensitivity and stability ratiometric electrochemical aptasensor using graphene quantum dots/[Cu (benzotriazole-5-COO) (benzotriazole-5-COOH) (μ-Cl) (μ-OH)-(HO)]·3 HO nanocomposite (GQDs/Cu-MOF) was constructed for S.

View Article and Find Full Text PDF

Recent Developments in Aptamer-Based Sensors for Diagnostics.

Sensors (Basel)

November 2024

School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Chronic and non-communicable diseases (NCDs) account for a large proportion of global disorders and mortality, posing significant burdens on healthcare systems. Early diagnosis and timely interference are critical for effective management and disease prevention. However, the traditional methods of diagnosis still suffer from high costs, time delays in processing, and infrastructure requirements that are usually unaffordable in resource-constrained settings.

View Article and Find Full Text PDF

Electrochemical biosensor for detection of ampicillin in milk based on AuPt and DNA cycle dual-signal amplification strategy.

Mikrochim Acta

December 2024

School of Life Sciences and Health Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.

A biosensor is reported for electrochemical detection of ampicillin based on AuPt and DNA cycle dual-signal amplification strategy. Firstly, AuPt is prepared by reduction of chloroauric acid and chloroplatinic acid with serine-functionalized graphene quantum dot (SGQD). The resulting AuPt shows an excellent catalytic activity because of the synergy of Au and Pt.

View Article and Find Full Text PDF

Background: The concentration monitoring of the banned metronidazole (MTZ) drug as the alarmed carcinogenic agent in human biofluids is medically essential. The electrochemical aptasensors are good candidates to overcome some presence challenges in the detection process.

Results: Herein, an electrochemical aptasensor based on nitrogen and sulfur co-doped carbon dots (NcS-CDs) has been developed for the high-sensitive detection of MTZ for the first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!