BP-3 exposure at environmentally relevant concentrations induced male developmental reproductive toxicity via ER/CCL27/ROS pathway in mice.

Ecotoxicol Environ Saf

The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China. Electronic address:

Published: December 2024

BP-3 is the most widely used ultraviolet absorber, but its toxic effects and mechanisms far from being elucidated. This study evaluated the male developmental reproductive toxicities and mechanism of low-doses of BP-3. The results indicated that BP-3 (2.28 and 228 μg/L) led to a decrease in sperm quantity, quality and testosterone level, impaired blood-testis barrier (BTB) integrity and cytoskeleton, accompanied by aggravated oxidative stress in testes of mice on postnatal day 56 (PND 56). Notably, chemokine CCL27, a driver of oxidative stress, was significantly upregulated induced by BP-3. Similar disrupted effects were detected in testes of mice on PND14, which could be antagonized by ICI 182780 (estrogen receptor antagonist). Mechanistically, BP-3 directly interacted with ER, which boosted CCL27 expression, reactive oxygen species (ROS) accumulation, and BTB and cytoskeleton impairment. In vitro, si-CCL27 and/or ROS scavenger treatment significantly antagonized BP-3-induced oxidative stress and the decrease of BTB and cytoskeleton related genes in TM4 cells. These findings demonstrate that prolonged exposure to low-doses of BP-3 resulted in detrimental effects on testicular development through activation of the ER/CCL27/ROS axis. This study provides a novel perspective understanding the male reproductive toxicity risk caused by BPs exposure at low-doses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.117556DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
male developmental
8
developmental reproductive
8
reproductive toxicity
8
low-doses bp-3
8
testes mice
8
btb cytoskeleton
8
exposure low-doses
8
bp-3
7
bp-3 exposure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!