The regulatory role of BMP9 on lipopolysaccharide-induced matrix metalloproteinases in human stem cells from the apical papilla.

Arch Oral Biol

Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, China. Electronic address:

Published: December 2024

Objective: The aim of this study was to investigate changes in the expression of members of the matrix metalloproteinases (MMPs) family in response to lipopolysaccharide (LPS) stimulation and to investigate the regulatory effects of BMP9 on MMPs.

Design: The extracted human stem cells from the apical papilla (hSCAPs) were identified by flow cytometry, Alizarin Red staining, Oil Red O staining, and alkaline phosphatase staining. The appropriate LPS concentration for inducing inflammation in hSCAPs was determined using real-time quantitative PCR (RT-qPCR) and Cell Counting Kit-8 (CCK-8) assays. MMP expression in LPS-stimulated hSCAPs was evaluated by RT-qPCR. BMP9 was overexpressed in hSCAPs via recombinant adenovirus, and its effects on MMP regulation were assessed using RT-qPCR, Western blotting, and ELISA. All experiments were conducted in vitro. Data were analyzed by one-way ANOVA followed by Tukey's post-hoc comparison, with p < 0.05 considered significant.

Results: The results showed that on the 3rd and 5th day after LPS stimulation, the expression of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-12, and MMP-13 in hSCAPs was significantly upregulated. On the 7th day after LPS induction, the expression of MMP-3, MMP-8, MMP-9 and MMP-13 in hSCAPs was significantly increased. When BMP9 was overexpressed in hSCAPs, the elevated MMPs were inhibited to varying degrees.

Conclusions: In the LPS-induced inflammatory environment, certain MMPs are elevated in hSCAP, with MMP-13 being the most significant. Overexpression of BMP9 can significantly inhibit elevated MMPs, suggesting that BMP9 may provide new insights and targets for the treatment of periapical periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.archoralbio.2024.106154DOI Listing

Publication Analysis

Top Keywords

matrix metalloproteinases
8
human stem
8
stem cells
8
cells apical
8
apical papilla
8
red staining
8
regulatory role
4
role bmp9
4
bmp9 lipopolysaccharide-induced
4
lipopolysaccharide-induced matrix
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!