Perturbative ensemble density functional theory applied to charge transfer excitations.

J Phys Condens Matter

Queensland Micro-nanotechnology Center, Griffith University, West Creek Road, Nathan, QLD 4111, Brisbane, Queensland, 4059, AUSTRALIA.

Published: December 2024

Charge transfer excitation energies are known to be challenging for standard time-dependent (TD) density functional theory (DFT) calculations. Perturbative ensemble DFT (pEDFT) was suggested as an easy-to-implelemt, low-cost alternative to TDDFT, because it is an in principle exact theory for calculating excitation energies that produces useful valence excitation energies. Here, we examine analytically and numerically (based on the benzene-tetracyanoethylene complex) how well pEDFT performs in the charge transfer limit. We find that pEDFT is qualitatively correct in that it follows the Mulliken limit while being only weakly dependent on the underlying density functional approximation. We observe, however, that quantitatively pEDFT is not as accurate as TDDFT. We attribute this to the emergence of a new type of self-interaction-like term that adversely affects the computation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ada07eDOI Listing

Publication Analysis

Top Keywords

density functional
12
charge transfer
12
excitation energies
12
perturbative ensemble
8
functional theory
8
ensemble density
4
theory applied
4
applied charge
4
transfer excitations
4
excitations charge
4

Similar Publications

Background: Early neurological deterioration (END) is associated with a poor prognosis in acute ischemic stroke (AIS). Effectively lowering low-density lipoprotein cholesterol (LDL-C) can improve the stability of atherosclerotic plaque and reduce post-stroke inflammation, which may be an effective means to lower the incidence of END. The objective of this study was to determine the preventive effects of evolocumab on END in patients with non-cardiogenic AIS.

View Article and Find Full Text PDF

A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC values of 17.02 ± 1.

View Article and Find Full Text PDF

The knowledge of diffusion mechanisms in materials is crucial for predicting their high-temperature performance and stability, yet accurately capturing the underlying physics like thermal effects remains challenging. In particular, the origin of the experimentally observed non-Arrhenius diffusion behavior has remained elusive, largely due to the lack of effective computational tools. Here we propose an efficient ab initio framework to compute the Gibbs energy of the transition state in vacancy-mediated diffusion including the relevant thermal excitations at the density-functional-theory level.

View Article and Find Full Text PDF

Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the efficacy of polydopamine (PDA) functionalization on orthodontic brackets in inhibiting biofilm formation and promoting surface bioactivity to buffer the acidity of caries-causing bacteria around orthodontic brackets and prevent demineralization. The stability of the coating in artificial saliva (AS) and distilled water was evaluated, along with its effect on pH changes in simulated body fluid (SBF) and distilled water.

Methods: Maxillary incisor orthodontic brackets underwent PDA functionalization using a dopamine hydrochloride solution following a specific protocol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!