G-protein-coupled receptors (GPCRs) play a crucial role in modulating physiological responses and serve as the main drug target. Specifically, salmeterol and salbutamol, which are used for the treatment of pulmonary diseases, exert their effects by activating the GPCR β2-adrenergic receptor (β2AR). In our study, we employed coarse-grained molecular dynamics simulations with the Martini 3 force field to investigate the dynamics of drug molecules in membranes in the presence and absence of β2AR. Our simulations reveal that, in more than 50% of the flip-flop events, the drug molecules use the β2AR surface to permeate the membrane. The pathway along the GPCR surface is significantly more energetically favorable for the drug molecules, which was revealed by umbrella sampling simulations along spontaneous flip-flop pathways. Furthermore, we assessed the behavior of drugs with intracellular targets, such as kinase inhibitors, whose therapeutic efficacy could benefit from this observation. In summary, our results show that β2AR surface interactions can significantly enhance the membrane permeation of drugs, emphasizing their potential for consideration in future drug development strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c02875 | DOI Listing |
Antioxid Redox Signal
December 2024
National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and podocyte injury is one of the major contributors to DKD. As a crucial transcriptional factor that regulates cellular response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is an attractive therapeutic target for DKD. In this study, we evaluated the therapeutic potential of DDO-1039, a novel small-molecule Nrf2 activator developed with protein-protein interaction strategy, on podocyte injury in DKD.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.
Isocitrate dehydrogenase (IDH)-mutant gliomas are the most common malignant primary brain tumors in young adults. This condition imposes a substantial burden on patients and their caregivers, marked by neurocognitive deficits and high mortality rates due to tumor progression, coupled with significant morbidity from current treatment modalities. Although surgery, radiation therapy, and chemotherapy improve survival, these treatments can adversely affect cognitive function, quality of life, finances, employment status, and overall independence.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China.
Introduction: Spinal cord injury (SCI) is a severe neurological disease characterized by significant motor, sensory, and autonomic dysfunctions. SCI is a major global disability cause, often resulting in long-term neurological impairments due to the impeded regeneration and remyelination of axons. A SCI interferes with communication between the brain and the spinal cord networks that control neurological functions.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Faculty of Chemistry, Bielefeld University, Bielefeld, Germany.
Front Immunol
December 2024
Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun, China.
Small-cell lung cancer (SCLC) is a refractory cancer with rapid growth and high aggressiveness. Extensive-stage SCLC is initially sensitive to chemotherapy; however, drug resistance and recurrence occur rapidly, resulting in a poor survival outcome due to lack of subsequently efficient therapy. The emergence of immune checkpoint inhibitors (ICIs) generated a new landscape of SCLC treatment and significantly prolonged the survival of patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!