Lanthanide nanoparticles (LnNPs) feature sharp emission lines together with millisecond emission lifetimes which make them promising luminescent probes for biosensing and bioimaging. Although LnNPs are attracting much interest, their photoluminescence properties at the single nanoparticle level remain largely unexplored. Here, we employ fluorescence correlation spectroscopy (FCS) and photoluminescence burst analysis to investigate the photodynamics of Sm- and Eu-based LnNPs with single nanoparticle sensitivity and microsecond resolution. By recording the photoluminescence intensity and the number of contributing LnNPs, we compute the photoluminescence brightness per individual nanoparticle and estimate the actual number of emitting centers per nanoparticle. Our approach overcomes the challenges associated with ensemble-averaged techniques and provides insights into LnNP photodynamics. Moreover, we demonstrate our microscope's ability to detect and analyze LnNPs at the single nanoparticle level, monitoring both photoluminescence brightness and burst duration. These findings expand our understanding of LnNPs and pave the way for advanced biosensing applications at the single nanoparticle level.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr02988gDOI Listing

Publication Analysis

Top Keywords

single nanoparticle
20
nanoparticle level
16
lanthanide nanoparticles
8
lnnps single
8
photoluminescence brightness
8
nanoparticle
7
photoluminescence
6
lnnps
6
single
5
watching lanthanide
4

Similar Publications

This study investigates the synthesis of ZnSnO@SiO@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. ZnSnO nanoparticles were synthesized and coated with a SiO shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that ZnSnO was the single crystalline phase present, with its crystallinity preserved after both SiO coating and 5-FU incorporation.

View Article and Find Full Text PDF

SERS-Based Local Field Enhancement in Biosensing Applications.

Molecules

December 2024

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures.

View Article and Find Full Text PDF

Optically Decoupling Electrochromic Dynamics and Morphological Evolution of a Single Soft Polyaniline Nanoentity.

Nano Lett

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Electroresponsive multicolored materials have tremendous potential in flexible electronics and smart wearable devices. Herein, the electrochromic dynamics and morphological evolution of a single soft polyaniline nanoentity can be visualized and decoupled by an opto-electrochemical imaging strategy. The durability, tinting speed, and reversibility down to the single-nanoparticle level are quantified, and the switching of transient intermediate electrochromic states is trapped.

View Article and Find Full Text PDF

Recombinant collagen microneedles for transdermal delivery of antibacterial copper-DNA nanoparticles to treat skin and soft tissue infections.

J Control Release

January 2025

School of Pharmacy, Changzhou University, Changzhou 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou 213164, PR China. Electronic address:

Skin and soft tissue infections (SSTI) include bacterial infections of the skin, muscles, and connective tissue such as ligaments and tendons. SSTI in patients with immunocompromising diseases may lead to chronic, hard-to-heal infected wounds, resulting in disability, amputation, or even death. To treat SSTI and rebuild the defensive barrier of the skin, here we utilize recombinant type XVII collagen protein (rCol XVII) to construct biodegradable, regenerative collagen microneedles (rCol-MN) for transdermal delivery of antibacterial agents.

View Article and Find Full Text PDF

Magnetopyrite FeS modified with N/S-doped carbon as a synergistic electrocatalyst for lithium-sulfur batteries.

J Colloid Interface Sci

January 2025

College of Physics and Electronic Information, Yunnan Normal University, 650500 Kunming, China. Electronic address:

Rational design of effective cathode host materials is an effective way to solve the problems of serious shuttle and slow conversion of polysulfides in lithium-sulfur batteries (LSBs). However, the redox reaction of sulfur differs from conventional "Rocking chair" type batteries and involves a cumbersome phase transition process, so a single-component catalyst cannot consistently and steadily enhance the reaction rate throughout the redox process. In this work, a hybrid composed of magnetopyrite FeS catalyst-modified with N/S-doped porous carbon spheres (FeS@NSC) is proposed as a novel sulfur host to synergistically promote the adsorption and redox catalysis conversion of polysulfides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!