A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mixed- and multi-relative biological effectiveness model simultaneous optimization in carbon ion radiotherapy: A proof-of-concept. | LitMetric

Background And Purpose: In carbon ion radiotherapy (CIRT), different relative biological effectiveness (RBE) models have been used for calculating RBE-weighted dose (D). Conversion between current RBE predictions and introduction of novel approaches remains a challenging task. Our aim is to introduce a framework considering multiple RBE models simultaneously during CIRT plan optimization, easing the translation between D prescriptions.

Materials And Methods: An in-house developed Monte Carlo treatment planning system was extended to incorporate the local effect model version I (LEM-I), the modified microdosimetric kinetic model (mMKM) and the MKM-derived Japanese biological model (NIRS-MKM). Four clinical cases (two head-and-neck and two prostate patients), initially optimized with LEM-I for both targets and organs at risk (OARs), underwent two further optimizations: to fulfill mMKM/NIRS-MKM-based target prescriptions (mixed-RBE approach) or to simultaneously consider two biological models within the target regions (multi-RBE approach). Both approaches retained LEM-I-derived dose constraints for OARs.

Results: The developed optimization strategies have been successfully applied, fulfilling all the clinical criteria for the applied RBE models. One of the RBE models showed unfavorable dose distribution when not explicitly considered in the optimization, while multi-RBE model optimization allowed meeting dose objectives for the selected OARs for both models simultaneously.

Conclusions: The introduced optimization approaches allow for mixed- or multi-RBE optimization in CIRT through the selection of RBE models independently for each region of interest. This capability addresses challenges of adhering to multiple RBE frameworks and proposes an advanced solution for tailored patient treatment plans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648266PMC
http://dx.doi.org/10.1016/j.phro.2024.100679DOI Listing

Publication Analysis

Top Keywords

rbe models
20
biological effectiveness
8
carbon ion
8
ion radiotherapy
8
multiple rbe
8
optimization
7
rbe
7
models
7
model
5
mixed- multi-relative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!