Combining two main functional alleles can increase rice yield.

Front Plant Sci

Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, China.

Published: December 2024

() is one of the key genes in regulating photosynthesis and plant architecture. As the antagonistic effects of have concurrent impacts on photosynthesis and yield component traits, how we can effectively utilize the gene to further increase rice yield is not clear. In this study, we used two different main functional alleles, each of which has previously been proven to have specifically advantageous traits, and tested whether the combined alleles have a higher yield than the homozygous alleles. Our results exhibited that the combined alleles had better parent heterosis (BPH) for panicle number and the total filled grain number per plant, and had middle parent heterosis (MPH) for spikelet number per panicle without affecting thousand-grain weight when compared with the homozygous alleles. In consequence, the hybrid plants displayed highly increased grain yield compared with both homozygous parents. The hybrid plants also had better plant architecture and higher canopy photosynthesis. Western blot and proteomics results showed the hybrid plants had a middle abundant NAL1 protein level, and the upregulated proteins were mainly involved in the nucleus and DNA binding process but the downregulated proteins were mainly involved in the oxidation-reduction process, single-organism metabolic process, and fatty acid biosynthetic process. Furthermore, the hybrid vigor effect of was confirmed by substituting the mutual male parent 9311 with 9311-NIL in two super hybrid rice varieties (LYP9 and YLY1). This study demonstrates that we can achieve a higher level of grain production in hybrid rice by using the heterosis of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647526PMC
http://dx.doi.org/10.3389/fpls.2024.1505679DOI Listing

Publication Analysis

Top Keywords

hybrid plants
12
main functional
8
functional alleles
8
increase rice
8
rice yield
8
plant architecture
8
combined alleles
8
homozygous alleles
8
parent heterosis
8
compared homozygous
8

Similar Publications

EnDM-CPP: A Multi-view Explainable Framework Based on Deep Learning and Machine Learning for Identifying Cell-Penetrating Peptides with Transformers and Analyzing Sequence Information.

Interdiscip Sci

December 2024

School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, 213164, China.

Cell-Penetrating Peptides (CPPs) are a crucial carrier for drug delivery. Since the process of synthesizing new CPPs in the laboratory is both time- and resource-consuming, computational methods to predict potential CPPs can be used to find CPPs to enhance the development of CPPs in therapy. In this study, EnDM-CPP is proposed, which combines machine learning algorithms (SVM and CatBoost) with convolutional neural networks (CNN and TextCNN).

View Article and Find Full Text PDF

BrSWEET11 accelerated Arabidopsis thaliana flowering, while silencing Brsweet11 in Brassica rapa delayed flowering relative to controls. BrSWEET11 is involved in sucrose transport after being induced by long-day conditions. SWEETs (Sugars Will Eventually Be Exported Transporters) are sugar outflow transporters that may participate in the regulation of plant flowering.

View Article and Find Full Text PDF

Heat interferes with multiple meiotic processes, leading to genome instability and sterility in flowering plants, including many crops. Despite its importance for food security, the mechanisms underlying heat tolerance of meiosis are poorly understood. In this study, we analyzed different meiotic processes in the Arabidopsis (Arabidopsis thaliana) accessions Columbia (Col) and Landsberg erecta (Ler), their F1 hybrids, and the F2 offspring under heat stress (37°C).

View Article and Find Full Text PDF

Two secretory T2 RNases from a fungal pathogen target distinct insect cell transmembrane proteins to cause cytotoxicity.

Insect Sci

December 2024

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China.

Fungal pathogens produce secretory ribonuclease (RNase) T2 proteins during infection, which contribute to fungal virulence via their enzyme functions in degradation of host cell RNA. However, the details of those proteins entering the host cells are unclear. Our previous study demonstrated that the two secretory RNase T2 members, BbRNT2 and BbTrv, produced by the insect fungal pathogen Beauveria bassiana, caused cytotoxic damage to insect cells and contributed to fungal virulence.

View Article and Find Full Text PDF

OsPAD1, encoding a non-specific lipid transfer protein, is required for rice pollen aperture formation.

Plant Mol Biol

December 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China.

Article Synopsis
  • - Plant lipid transfer proteins (LTPs) are crucial for moving lipids between membranes, impacting pollen wall development, including the pollen aperture structure.
  • - The study focuses on a rice mutant called pollen aperture defect 1 (Ospad1), which shows male sterility due to abnormal pollen grain development linked to a non-specific LTP that fails to properly bind lipids.
  • - Researchers found that OsPAD1 interacts with a gene involved in pollen development, providing new insights into how LTPs function in forming pollen apertures, which could have broader implications for other cereal crops.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!