High neural noise in autism: A hypothesis currently at the nexus of explanatory power.

Heliyon

Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia.

Published: December 2024

Autism is a neurodevelopmental difference associated with specific autistic experiences and characteristics. Early models such as Weak Central Coherence and Enhanced Perceptual Functioning have tried to capture complex autistic behaviours in a single framework, however, these models lacked a neurobiological explanation. Conversely, current neurobiological theories of autism at the cellular and network levels suggest excitation/inhibition imbalances lead to high neural noise (or, a 'noisy brain') but lack a thorough explanation of how autistic behaviours occur. Critically, around 15 years ago, it was proposed that high neural noise in autism produced a stochastic resonance (SR) effect, a phenomenon where optimal amounts of noise improve signal quality. High neural noise can thus capture both the enhanced (through SR) and reduced performance observed in autistic individuals during certain tasks. Here, we provide a review and perspective that positions the "high neural noise" hypothesis in autism as best placed to provide research direction and impetus. Emphasis is placed on evidence for SR in autism, as this promising prediction has not yet been reviewed in the literature. Using this updated approach towards autism, we can explain a spectrum of autistic experiences all through a neurobiological lens. This approach can further aid in developing specific support or services for autism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648220PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e40842DOI Listing

Publication Analysis

Top Keywords

high neural
16
neural noise
16
autism
8
noise autism
8
autistic experiences
8
autistic behaviours
8
noise
5
autistic
5
high
4
autism hypothesis
4

Similar Publications

Background: Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration.

Methods: We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi).

View Article and Find Full Text PDF

Background: Alterations in sensory perception, a core phenotype of autism, are attributed to imbalanced integration of sensory information and prior knowledge during perceptual statistical (Bayesian) inference. This hypothesis has gained momentum in recent years, partly because it can be implemented both at the computational level, as in Bayesian perception, and at the level of canonical neural microcircuitry, as in predictive coding. However, empirical investigations have yielded conflicting results with evidence remaining limited.

View Article and Find Full Text PDF

In this study, Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) were developed to estimate the equilibrium solubility and partial pressure of CO in blended aqueous solutions of diisopropanolamine (DIPA) and 2-amino-2-methylpropanol (AMP). In this study, several key parameters were analyzed to understand the behavior of the aqueous DIPA/AMP system for CO capture. Including DIPA (9-21 wt%), AMP (9-21 wt%), temperature (323.

View Article and Find Full Text PDF

Quickly identifying and classifying lightning waveforms is the foundation of lightning forecasting and early warning. In this paper, based on the electric field observation of the Beijing lightning location website of the Institute of Atmospheric Physics, Chinese Academy of Sciences, a recognition and classification method of pulse signal waveform based on Convolutional Neural Network(CNN) algorithm is designed and implemented. The CNN network model and its parameters were optimized from three aspects: dataset, model parameters, and network structure, achieving a recognition rate of over 90%.

View Article and Find Full Text PDF

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!