Terahertz (THz) polarization detection facilitates the capture of multidimensional data, including intensity, phase, and polarization state, with broad applicability in high-resolution imaging, communication, and remote sensing. However, conventional semiconductor materials are limited by energy band limitations, rendering them unsuitable for THz detection. Overcoming this challenge, the realization of high-stability, room-temperature polarization-sensitive THz photodetectors (PDs) leveraging the thermoelectric effect of Cs(FAMA)Pb(IBr) (CsFAMA)/metasurfaces is presented. Two different structures of (T-shaped and I-shaped) THz PDs are constructed. The incorporation of perovskite/metasurfaces forms enhanced local field thermoelectric effect and polarization response. Owning to THz surface plasmon polariton (SPP) resonance effect and more boundary effect, the I-shaped PDs exhibit superior performance, achieving a response of up to 94 V/W, with a response time of 138 µs, a low noise-equivalent power of 5.03 pW/Hz and an anisotropy ratio of 1.38 under 0.1THz laser irradiation. Furthermore, the PD's stability is verified with the anisotropy ratio decreased by only 2% and polarization imaging results after 240 days of storage in air condition. This research introduces a method for achieving high-performance, stable THz polarization detection technology, with significant potential for advancements in materials science, communication technology, and medical imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202407634DOI Listing

Publication Analysis

Top Keywords

thz polarization
8
polarization detection
8
anisotropy ratio
8
thz
6
polarization
5
room-temperature terahertz
4
terahertz photodetector
4
imaging
4
photodetector imaging
4
imaging high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!