Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photoelectrochemical (PEC) CO reduction using a photocathode is an attractive method for making valuable chemical products due to its simplicity and lower overpotential requirements. However, previous PEC processes have often been diffusion-limited leading to low production rates of the CO reduction reaction, due to inefficient gas diffusion through the liquid electrolyte to the catalyst surface, particularly at high current densities. In this study, a gas-permeable photocathode in a continuous flow PEC reactor is incorporated, which facilitates the direct supply of CO gas to the photocathode-electrolyte interface, unlike dark reaction-based flow reactors. This concept is demonstrated using Ag-TiO on carbon paper, illuminated through a quartz window and flowing liquid electrolyte. CO supply is managed via pressure and flow control on the non-illuminated side of the carbon paper. The photocurrent density is significantly influenced by the flow rates and pressure of CO gas, and the electrolyte flow rates. Compared to the traditional H-cell, the continuous PEC flow reactor achieves ≈10-fold increase in CO faradaic efficiency, 30-fold increase in production rate and 16-fold increase in stability without catalyst modifications. This work provides essential insights into the design and application of continuous gas-liquid flow PEC reactor systems, highlighting their potential for other PEC reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202411348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!