Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
(1) Background: Human detection and tracking are critical tasks for assistive autonomous robots, particularly in ensuring safe and efficient human-robot interaction in indoor environments. The increasing need for personal assistance among the elderly and people with disabilities has led to the development of innovative robotic systems. (2) Methods: This research presents a lightweight two-layer control architecture for a human-following robot, integrating a fuzzy behavior-based control system with low-level embedded controllers. The system uses an RGB-D sensor to capture distance and angular data, processed by a fuzzy controller to generate speed set-points for the robot's motors. The low-level control layer was developed using pole placement and internal model control (IMC) methods. (3) Results: Experimental validation demonstrated that the proposed architecture enables the robot to follow a person in real time, maintaining the predefined following distance of 1.3 m in each of the five conducted trials. The IMC-based controller demonstrated superior performance compared to the pole placement controller across all evaluated metrics. (4) Conclusions: The proposed control architecture effectively addresses the challenges of human-following in indoor environments, offering a robust, real-time solution suitable for assistive robotics with limited computational resources. The system's modularity and scalability make it a promising approach for future developments in personal assistance robotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644850 | PMC |
http://dx.doi.org/10.3390/s24237796 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!