Energy-Efficient Cooperative Transmission in Ultra-Dense Millimeter-Wave Network: Multi-Agent Q-Learning Approach.

Sensors (Basel)

Department of Electronic Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea.

Published: December 2024

In beyond fifth-generation networks, millimeter wave (mmWave) is considered a promising technology that can offer high data rates. However, due to inter-cell interference at cell boundaries, it is difficult to achieve a high signal-to-interference-plus-noise ratio (SINR) among users in an ultra-dense mmWave network environment (UDmN). In this paper, we solve this problem with the cooperative transmission technique to provide high SINR to users. Using coordinated multi-point transmission (CoMP) with the joint transmission (JT) strategy as a cooperation diversity technique can provide users with higher data rates through multiple desired signals. Nonetheless, cooperative transmissions between multiple base stations (BSs) lead to increased energy consumption. Therefore, we propose a multi-agent Q-learning-based power control scheme in UDmN. To satisfy the quality of service (QoS) requirements of users and decrease the energy consumption of networks, we define a reward function while considering the outage and energy efficiency of each BS. The results show that our scheme can achieve optimal transmission power and significantly improved network energy efficiency compared with conventional algorithms such as no transmit power control and random control. Additionally, we validate that leveraging channel state information to determine the participation of each BS in power control contributes to enhanced overall performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644928PMC
http://dx.doi.org/10.3390/s24237750DOI Listing

Publication Analysis

Top Keywords

power control
12
cooperative transmission
8
data rates
8
sinr users
8
technique provide
8
energy consumption
8
energy efficiency
8
transmission
5
energy-efficient cooperative
4
transmission ultra-dense
4

Similar Publications

Using simulated data with duplicate observational data points, this research aims to highlight the notable efficiency of repeated measures analysis of variance (ANOVA) compared to one-way ANOVA as a more powerful statistical model. One of the principal advantages of repeated measures ANOVA is its design, in which each subject acts as their own control. This methodology allows for the statistical mitigation of individual differences among subjects, thereby reducing extraneous variability (noise) that can obscure the effects of the experimental conditions under investigation.

View Article and Find Full Text PDF

Introduction: Tissue eosinophil counts (TEC) might serve as a biomarker linking chronic rhinosinusitis (CRS) and the presence of adult-onset asthma. This study aimed to determine if TEC in sinus mucosa/polyps in CRS patients is an independent indicator of asthma and to identify its optimal cut-off point.

Methods: This cross-sectional study was conducted on primary CRS patients scheduled for surgery.

View Article and Find Full Text PDF

Ferroelectric Optical Memristors Enabled by Non-Volatile Electro-Optic Effect.

Adv Mater

January 2025

Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China.

Memristors enable non-volatile memory and neuromorphic computing. Optical memristors are the fundamental element for programmable photonic integrated circuits due to their high-bandwidth computing, low crosstalk, and minimal power consumption. Here, an optical memristor enabled by a non-volatile electro-optic (EO) effect, where refractive index modulation under zero field is realized by deliberate control of domain alignment in the ferroelectric material Pb(MgNb)O-PbTiO(PMN-PT) is proposed.

View Article and Find Full Text PDF

A Novel Isotropic Optical Fiber: Antimicrobial Effect of Blue Light on Drug Resistant Organisms.

J Orthop Res

January 2025

Department of Orthopaedic Surgery, Division of Arthroplasty and Joint Reconstruction, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Drug-resistant organisms (DROs) necessitate the development of new therapies. Antimicrobial blue light (ABL) is a promising option, utilizing photoexcitation of endogenous bacterial components to generate reactive oxygen species, leading to bacterial death. The aim of this study is to investigate the effects of a novel isotropic optical fiber under in-vitro conditions on multidrug-resistant gram-negative Pseudomonas aeruginosa (MDR-Pa) and methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

Leech-Inspired Amphibious Soft Robot Driven by High-Voltage Triboelectricity.

Adv Mater

January 2025

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China.

Leech locomotion, characterized by alternating sucker attachment and body contraction provides high adaptability and stability on complex terrains. Herein, a leech-inspired triboelectric soft robot is proposed for the first time, capable of amphibious movement, climbing, and load-carrying crawling. A high-performance triboelectric bionic robot system is developed to drive and control electro-responsive soft robots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!