A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radar Sensor Data Fitting for Accurate Linear Sprint Modelling. | LitMetric

Background: Accurate linear sprint modelling is essential for evaluating athletes' performance, particularly in terms of force, power, and velocity capabilities. Radar sensors have emerged as a critical tool in capturing precise velocity data, which is fundamental for generating reliable force-velocity (FV) profiles. This study focuses on the fitting of radar sensor data to various sprint modelling techniques to enhance the accuracy of these profiles. Forty-seven university-level athletes (M = 23, F = 24; 1.75 ± 0.1 m; 79.55 ± 12.64 kg) participated in two 40 m sprint trials, with radar sensors collecting detailed velocity measurements. This study evaluated five different modelling approaches, including three established methods, a third-degree polynomial, and a sigmoid function, assessing their goodness-of-fit through the root mean square error (RMSE) and coefficient of determination (r). Additionally, FV metrics (, , , , and ) were calculated and compared using ANOVA.

Results: Significant differences ( < 0.001) were identified across the models in terms of goodness-of-fit and most FV metrics, with the sigmoid and polynomial functions demonstrating superior fit to the radar-collected velocity data.

Conclusions: The results suggest that radar sensors, combined with appropriate modelling techniques, can significantly improve the accuracy of sprint performance analysis, offering valuable insights for both researchers and coaches. Care should be taken when comparing results across studies employing different modelling approaches, as variations in model fitting can impact the derived metrics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645076PMC
http://dx.doi.org/10.3390/s24237632DOI Listing

Publication Analysis

Top Keywords

sprint modelling
12
radar sensors
12
radar sensor
8
sensor data
8
accurate linear
8
linear sprint
8
modelling techniques
8
modelling approaches
8
modelling
6
radar
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!