The advent of 5G technology has facilitated the adoption of private cellular networks in industrial settings. Ensuring reliable coverage while maintaining certain requirements at its boundaries is crucial for successful deployment yet challenging without extensive measurements. In this article, we propose the leveraging of unmanned aerial vehicles (UAVs) and Gaussian processes (GPs) to reduce the complexity of this task. Physics-informed mean functions, including a detailed ray-tracing simulation, are integrated into the GP models to enhance the extrapolation performance of the GP prediction. As a central element of the GP prediction, a quantitative evaluation of different mean functions is conducted. The most promising candidates are then integrated into an informative path-planning algorithm tasked with performing an efficient UAV-based cellular network mapping. The algorithm combines the physics-informed GP models with Bayesian optimization and is developed and tested in a hardware-in-the-loop simulation. The quantitative evaluation of the mean functions and the informative path-planning simulation are based on real-world measurements of the 5G reference signal received power (RSRP) in a cellular 5G-SA campus network at the Port of Lübeck, Germany. These measurements serve as ground truth for both evaluations. The evaluation results demonstrate that using an appropriate mean function can result in an enhanced prediction accuracy of the GP model and provide a suitable basis for informative path planning. The subsequent informative path-planning simulation experiments highlight these findings. For a fixed maximum travel distance, a path is iteratively computed, reducing the flight distance by up to 98% while maintaining an average root-mean-square error of less than 6 dBm when compared to the measurement trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644828 | PMC |
http://dx.doi.org/10.3390/s24237601 | DOI Listing |
PLoS One
January 2025
College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, P.R. China.
Automated large-scale farmland preparation operations face significant challenges related to path planning efficiency and uniformity in resource allocation. To improve agricultural production efficiency and reduce operational costs, an enhanced method for planning land preparation paths is proposed. In the initial stage, unmanned aerial vehicles (UAVs) are employed to collect data from the field, which is then used to construct accurate farm models.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Electrical and Information Engineering, Jingjiang College, Jiangsu University, Zhenjiang 212013, China.
Path planning is a core technology for mobile robots. However, existing state-of-the-art methods suffer from issues such as excessive path redundancy, too many turning points, and poor environmental adaptability. To address these challenges, this paper proposes a novel global and local fusion path-planning algorithm.
View Article and Find Full Text PDFSci Rep
January 2025
Xiamen Topstar Co., Ltd., Xiamen, 361000, Fujian, China.
Automated guided vehicles play a crucial role in transportation and industrial environments. This paper presents a proposed Bio Particle Swarm Optimization (BPSO) algorithm for global path planning. The BPSO algorithm modifies the equation to update the particles' velocity using the randomly generated angles, which enhances the algorithm's searchability and avoids premature convergence.
View Article and Find Full Text PDFISA Trans
December 2024
Department of Control Science and Engineering, Tongji University, Shanghai, 201804, China; National Key Laboratory of Autonomous Intelligent Unmanned Systems, Shanghai Research Institute for Intelligent Autonomous Systems, and Frontiers Science Center for Intelligent Autonomous Systems, Ministry of Education, Tongji University, Shanghai 201210, China. Electronic address:
This work investigates a game-theoretic path planning algorithm with online objective function parameter estimation for a multiplayer intrusion-defense game, where the defenders aim to prevent intruders from entering the protected area. At first, an intruder is assigned to each defender to perform a one-to-one interception by solving an integer optimization problem. Then, the intrusion-defense game is formulated in a receding horizon manner by designing the objective function and constraints for the defenders and intruders, respectively.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou, China.
In response to the challenges faced by the Coati Optimization Algorithm (COA), including imbalance between exploration and exploitation, slow convergence speed, susceptibility to local optima, and low convergence accuracy, this paper introduces an enhanced variant termed the Adaptive Coati Optimization Algorithm (ACOA). ACOA achieves a balanced exploration-exploitation trade-off through refined exploration strategies and developmental methodologies. It integrates chaos mapping to enhance randomness and global search capabilities and incorporates a dynamic antagonistic learning approach employing random protons to mitigate premature convergence, thereby enhancing algorithmic robustness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!