A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Defect Detection and 3D Reconstruction of Complex Urban Underground Pipeline Scenes for Sewer Robots. | LitMetric

Detecting defects in complex urban sewer scenes is crucial for urban underground structure health monitoring. However, most image-based sewer defect detection models are complex, have high resource consumption, and fail to provide detailed damage information. To increase defect detection efficiency, visualize pipelines, and enable deployment on edge devices, this paper proposes a computer vision-based robotic defect detection framework for sewers. The framework encompasses positioning, defect detection, model deployment, 3D reconstruction, and the measurement of realistic pipelines. A lightweight Sewer-YOLO-Slim model is introduced, which reconstructs the YOLOv7-tiny network by adjusting its backbone, neck, and head. Channel pruning is applied to further reduce the model's complexity. Additionally, a multiview reconstruction technique is employed to build a 3D model of the pipeline from images captured by the sewer robot, allowing for accurate measurements. The Sewer-YOLO-Slim model achieves reductions of 60.2%, 60.0%, and 65.9% in model size, parameters, and floating-point operations (FLOPs), respectively, while improving the mean average precision (mAP) by 1.5%, reaching 93.5%. Notably, the pruned model is only 4.9 MB in size. Comprehensive comparisons and analyses are conducted with 12 mainstream detection algorithms to validate the superiority of the proposed model. The model is deployed on edge devices with the aid of TensorRT for acceleration, and the detection speed reaches 15.3 ms per image. For a real section of the pipeline, the maximum measurement error of the 3D reconstruction model is 0.57 m. These results indicate that the proposed sewer inspection framework is effective, with the detection model exhibiting advanced performance in terms of accuracy, low computational demand, and real-time capability. The 3D modeling approach offers valuable insights for underground pipeline data visualization and defect measurement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644151PMC
http://dx.doi.org/10.3390/s24237557DOI Listing

Publication Analysis

Top Keywords

defect detection
20
model
10
complex urban
8
urban underground
8
underground pipeline
8
edge devices
8
detection model
8
sewer-yolo-slim model
8
model size
8
detection
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!