Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bolometric detection of electromagnetic radiation is a well-established method in a wide frequency range, from millimeter waves through the terahertz region up to infrared. Fabrication of such a detector is often an expensive and demanding process. We propose a simple device based on a commercially available thermistor as a sensing element. To direct radiation to the sensor, we designed and fabricated a 3D-printed optical element integrated with the dielectric waveguide. An electronic setup was prepared to measure the sensor response. The described device is an affordable detector with acceptable detection parameters such as SNR or responsivity at a hundreds of volts per watt level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s24237533 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644548 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!