Biological activity is strongly dependent on pH, which fluctuates within a variety of neutral, alkaline, and acidic local environments. The heterogeneity of tissue and subcellular pH has driven the development of sensors with different pKa values, and a huge assortment of fluorescent sensors have been created to measure and visualize pH in living cells and tissues. In particular, sensors that report based on fluorescence lifetime are advantageous for quantitation. Here, we apply a theoretical framework to derive how the apparent pKa of lifetime-based pH sensors depends on fluorescence excitation wavelength. We demonstrate that theory predicts the behavior of two different fluorescent protein-based pH sensors in solution as proofs-of-concept. Furthermore, we show that this behavior has great practical value in living cells because it extends the sensing range of a single sensor by simply choosing appropriate detection parameters to match the physiological pH range of interest. More broadly, our results show that the versatility of a single lifetime-based sensor has been significantly underappreciated, and our approach provides a means to use a single sensor across a range of pH environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644319 | PMC |
http://dx.doi.org/10.3390/s24237531 | DOI Listing |
Biosens Bioelectron
December 2024
Department of Gastroenterology, Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, 430072, PR China; Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, PR China. Electronic address:
Biomolecules play essential roles in regulating the orderly progression of biochemical reaction networks. DNA-based biocircuits supplement an attractive and ideal approach for the visual imaging of endogenous biomolecules, yet their sensing performance is commonly encumbered by the undesired signal leakage. To solve this issue, here we proposed a glutathione (GSH)-activated DNA circuit for achieving the spatio-selective microRNA imaging through the successive response of a GSH-specific activation procedure and a non-enzymatic catalytic signal amplification procedure.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:
Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Department of Biomedical Science and Environmental Biology, School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:
Anti-mullerian hormone (AMH) detection receives much attention since it is used as an ideal biomarker for quantitative assessment of ovarian reserve. The present study proposed a first report on the use of MOF-on-MOF as an electrochemical sensor for recognizing AMH in buffer and serum media. The MOF-on-MOF, MIL-88 B@UiO66NH was synthesized by the internal extended growth method (IEGM) involving MIL-88 B on UiO66NH by in situ method for the first time.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Department of Women's and Children's Health, Uppsala University, Uppsala, 751 85, Sweden.
Background: Stillbirth occurs at a rate of 3.0 per thousand in Sweden. However, few studies have focused on the initial experiences of parents facing a stillbirth.
View Article and Find Full Text PDFCell
December 2024
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address:
Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!