"Smart" devices, such as contemporary smartphones and PDAs (Personal Digital Assistance), play a significant role in our daily live, be it for navigation or location-based services (LBSs). In this paper, the use of Ultra-Wide Band (UWB) and Wireless Fidelity (Wi-Fi) based on RTT (Round-Trip Time) measurements is investigated for pedestrian user localization. For this purpose, several scenarios are designed either using real observation or simulated data. In addition, the localization of user groups within a neighborhood based on collaborative navigation (CP) is investigated and analyzed. An analysis of the performance of these techniques for ranging the positioning estimation using different fusion algorithms is assessed. The methodology applied for CP leverages the hybrid nature of the range measurements obtained by UWB and Wi-Fi RTT systems. The proposed approach stands out due to its originality in two main aspects: (1) it focuses on developing and evaluating suitable models for correcting range errors in RF-based TWR (Two-Way Ranging) technologies, and (2) it emphasizes the development of a robust CP engine for groups of pedestrians. The results obtained demonstrate that a performance improvement with respect to position trueness for UWB and Wi-Fi RTT cases of the order of 74% and 54%, respectively, is achieved due to the integration of these techniques. The proposed localization algorithm based on a P2I/P2P (Peer-to-Infrastructure/Peer-to-Peer) configuration provides a potential improvement in position trueness up to 10% for continuous anchor availability, i.e., UWB known nodes or Wi-Fi access points (APs). Its full potential is evident for short-duration events of complete anchor loss (P2P-only), where an improvement of up to 53% in position trueness is achieved. Overall, the performance metrics estimated based on the extensive evaluation campaigns demonstrate the effectiveness of the proposed methodologies.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s24237520DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644350PMC

Publication Analysis

Top Keywords

position trueness
12
uwb wi-fi
8
wi-fi rtt
8
development advanced
4
advanced positioning
4
positioning techniques
4
techniques uwb/wi-fi
4
rtt
4
uwb/wi-fi rtt
4
rtt ranging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!