A Deep Learning-Based Method for Bearing Fault Diagnosis with Few-Shot Learning.

Sensors (Basel)

College of Mechanical Engineering, Shenyang Ligong University, Nanping Middle Road 6, Shenyang 110159, China.

Published: November 2024

To tackle the issue of limited sample data in small sample fault diagnosis for rolling bearings using deep learning, we propose a fault diagnosis method that integrates a KANs-CNN network. Initially, the raw vibration signals are converted into two-dimensional time-frequency images via a continuous wavelet transform. Next, Using CNN combined with KANs for feature extraction, the nonlinear activation of KANs helps extract deep and complex features from the data. After the output of CNN-KANs, an FAN network module is added. The FAN module can employ various feature aggregation strategies, such as weighted averaging, max pooling, addition aggregation, etc., to combine information from multiple feature levels. To further tackle the small sample issue, data generation is performed on the original data through diffusion networks under conditions of fewer samples for bearings and tools, thereby increasing the sample size of the dataset and enhancing fault diagnosis accuracy. Experimental results demonstrate that, under small sample conditions, this method achieves higher accuracy compared to other approaches.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s24237516DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644817PMC

Publication Analysis

Top Keywords

fault diagnosis
16
small sample
12
sample
5
deep learning-based
4
learning-based method
4
method bearing
4
fault
4
bearing fault
4
diagnosis
4
diagnosis few-shot
4

Similar Publications

The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.

View Article and Find Full Text PDF

The safety and reliability of rotating machinery hinge significantly on the proper functioning of rolling bearings. In the last few years, there have been significant advances in the algorithms for intelligent fault diagnosis of bearings. However, the vibration signals collected by machines are inevitably affected by irrelevant noise because of the complex working environments of bearings.

View Article and Find Full Text PDF

Addressing the issues of a single-feature input channel structure, scarcity of training fault data, and insufficient feature learning capabilities in noisy environments for intelligent diagnostic models of mechanical equipment, we propose a method based on a one-dimensional and two-dimensional dual-channel feature information fusion convolutional neural network (1D_2DIFCNN). By constructing a one-dimensional and two-dimensiona dual-channel feature information fusion convolutional network and introducing a Convolutional Block Attention Mechanism, we utilize Random Overlapping Sampling Technique to process raw vibration signals. The model takes as inputs both one-dimensional data and two-dimensional Continuous Wavelet Transform images.

View Article and Find Full Text PDF

Accurate system health state prediction through deep learning requires extensive and varied data. However, real-world data scarcity poses a challenge for developing robust fault diagnosis models. This study introduces two extensive datasets, Aalto Shim Dataset and Aalto Gear Fault Dataset, collected under controlled laboratory conditions, aimed at advancing deep learning-based fault diagnosis.

View Article and Find Full Text PDF

Rolling bearings of the vibration exciter are prone to failure due to long-term high amplitude alternating impact loads, causing economic losses and threatening production safety. The heavy environmental noise during the operation of the vibration exciter and the high vibration level generated by the eccentric block make the weak bearing fault features submerged and difficult to extract. Teager-Kaiser energy operator is a popular method for extracting bearing fault features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!