Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The integration of artificial intelligence (AI) in medicine has progressed from rule-based systems to advanced models and is showing potential in clinical decision-making. In this study, the psychological impact of AI collaboration in clinical practice is assessed, highlighting its role as a support tool for medical residents. This study aimed to compare clinical decision-making approaches of junior rheumatology residents with both trained and untrained AI models in clinical reasoning, pre-diagnosis, first-line, and second-line management stages. Ten junior rheumatology residents and two GPT-4 models (trained and untrained) responded to 10 clinical cases, encompassing diagnostic and treatment challenges in inflammatory arthritis. The cases were evaluated using the Revised-IDEA (R-IDEA) scoring system and additional case management metrics. In addition to scoring clinical case performance, residents' attitudes toward AI integration in clinical practice were assessed through a structured questionnaire, focusing on perceptions of AI's potential after reviewing the trained GPT-4's answers. Trained GPT-4 outperformed residents across all stages, achieving significantly higher median R-IDEA scores and superior performance in pre-diagnosis, first-line, and second-line management phases. Residents expressed a positive attitude toward AI integration, with 60% favoring AI as a supportive tool in clinical practice, anticipating benefits in competence, fatigue, and burnout. Trained GPT-4 models outperform junior residents in clinical reasoning and management of rheumatology cases. Residents' positive attitudes toward AI suggest its potential as a supportive tool to enhance confidence and reduce uncertainty in clinical practice. Trained GPT-4 may be used as a supplementary tool during the early years of residency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/jcm13237405 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642710 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!