This article addresses the knowledge gap regarding the effect of Ti addition on the microstructure and corrosion behavior of the LMD-processed GH3536 alloy in a simulated solution of proton exchange membrane fuel cells (PEMFCs). The microstructural evolution, corrosion resistance, and passive film characteristics of LMD-processed GH3536 alloy with varying Ti contents were characterized through a variety of techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), X-ray photoelectron spectroscopy (XPS), and a series of electrochemical measurements. The results indicate that the corrosion resistance of the LMD-processed GH3536 alloy significantly improves with increasing Ti content. However, when the Ti content exceeds 0.2 wt.%, the beneficial effect on corrosion resistance is weakened. Two primary mechanisms explain the enhanced corrosion resistance, involving the heterogeneous nucleation of Ti-modified AlO and Ti solute segregation, which promotes grain refinement. In addition, grain refinement can provide more active sites for the formation of compact passive films, thereby improving corrosion resistance of the GH3536 alloy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma17235900 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643431 | PMC |
J Hazard Mater
December 2024
Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
The proliferation and chlorine resistance of pathogenic bacteria in drinking water distribution systems (DWDSs) pose a serious threat to human health. In this study, the synergistic effects of ozonation pretreatment and trace phosphate on water quality health risk and microbial stability were investigated in the small-scale DWDSs simulated by biofilms annular reactors with cast iron coupons. The results indicated that ozonation of drinking water containing trace phosphate was equivalent to increasing microbial carbon and phosphorus sources, further leading to the rapid proliferation of opportunistic pathogens (OPs) in subsequent DWDSs.
View Article and Find Full Text PDFRSC Adv
December 2024
College of Materials and Chemical Engineering, Anhui Jianzhu University Hefei 230601 China
Acid rain and carbonization are two primary types of environmental corrosion that threaten the health of urban concrete structures over time. However, the coupling effects of acid rain and carbonization on concrete deterioration have been rarely reported. In this paper, four coupling regimes were designed using accelerated simulation experiments to investigate the deterioration properties of white ultra-high performance concrete (WUHPC).
View Article and Find Full Text PDFSci Rep
December 2024
Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt.
In this study, a titanate-polyurethane-chitosan ternary nanocomposite was prepared by physical mixing. Sodium titanate nanotubes (Na-TNTs) were prepared by the hydrothermal method, and chitosan was extracted from shrimp shell. Na-TNTs were mixed with polyurethane (PU) of different ratios by weight, and chitosan was added after optimization.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Shandong, Qingdao, 266580, China.
Microbiologically induced corrosion (MIC) is widespread in the oilfield industry, and new environmentally friendly materials are urgently needed to inhibit MIC with the increasing environmental requirements and microbial resistance problems. The synthesis method and cost of the materials are important factors that must be considered in the production and application. In this study, Ag/Cu bimetallic nanoparticles (BNPs) were synthesized by eco-friendly and sustainable method using waste banana peel extract (BPE) as a green reducing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
Oxygen-free copper is utilized in nuclear processing heaters; however, it exhibits poor resistance to hydrogen radiation corrosion. A tantalum-copper diffusion layer with high vacancy concentration was prepared on the copper surface. This layer demonstrates superior hydrogen trapping and diffusion resistance compared to pure tantalum, though the underlying mechanism remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!