A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In Situ Ultrasonic Characterization of Hydrogen Damage Evolution in X80 Pipeline Steel. | LitMetric

In Situ Ultrasonic Characterization of Hydrogen Damage Evolution in X80 Pipeline Steel.

Materials (Basel)

School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.

Published: December 2024

A nondestructive evaluation of the hydrogen damage of materials in a hydrogen environment is important for monitoring the running conditions of various pieces of equipment. In this work, a new thermostatic electrolytic hydrogenation in situ ultrasonic test system (In Situ TEH-UT) was developed. The system operates by combining cross-correlation delay estimation and frequency domain amplitude estimation and hence improves measurement accuracy with respect to ultrasonic propagation time and amplitude, allowing in situ ultrasonic evaluation of the hydrogen-charging process in X80 pipeline steel. The experimental results show that under a 30 mA/cm hydrogen-charging current, the hydrogen saturation time of X80 pipeline steel is 800 min. Between 0 and 800 min, the attenuation coefficient and amplitude attenuation both demonstrate a strong linear relationship with the hydrogen-charging time. After 800 min, the attenuation coefficient and amplitude attenuation do not change further, while the attenuation coefficient fluctuates greatly. Through the characterization of the microstructures of the materials analyzed, it was found that hydrogen-induced cracks (HICs) constituted the main reason for the change in the ultrasonic parameters, and the mechanism behind the hydrogen-induced damage layer (HIDL) was determined. This study provides reference significance for clarifying the change mechanism of ultrasonic parameters under hydrogen damage conditions and determining the extent of hydrogen damage using an ultrasonic technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643458PMC
http://dx.doi.org/10.3390/ma17235891DOI Listing

Publication Analysis

Top Keywords

hydrogen damage
16
situ ultrasonic
12
x80 pipeline
12
pipeline steel
12
800 min
12
attenuation coefficient
12
min attenuation
8
coefficient amplitude
8
amplitude attenuation
8
ultrasonic parameters
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!