Welding of S960QL High-Strength Steel by the Manual-Automated MAG Technique-A Study of Mechanical Properties, Residual Stresses and Fracture Mechanisms in the Heat-Affected Zone.

Materials (Basel)

Institute of Robots & Machine Design, Faculty of Mechanical Engineering, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland.

Published: November 2024

This paper presents results of investigations of a V-type welded joint made of S960QL high-strength steel made using a mixed technique: the root was welded manually and the face automatically. Although high-strength steels have been available on the market for many years, they are still the subject of research due to their increasingly widespread usage. For this reason, detailed investigations of welded joints of S960QL steel were carried out in terms of microstructure, microhardness, impact toughness and residual stresses, in order to expand knowledge in this area. The obtained results made it possible to determine their changes in heat-affected zone (HAZ) as a function of the distance from the fusion line. One of the most important findings is that during the tensile tests, the rupture occurred in the sub-zone of HAZ, which is characterized by increased strength and low ductility. This was due to the fact that an unfavorable residual stress distribution occurred in this area, causing the highest initial local strain of the material. Furthermore, different fracture mechanisms, both ductile and brittle, as well as mixed, were observed and described in detail for each sub-zone of the HAZ and in the weld.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma17235792DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642590PMC

Publication Analysis

Top Keywords

s960ql high-strength
8
high-strength steel
8
residual stresses
8
fracture mechanisms
8
heat-affected zone
8
sub-zone haz
8
welding s960ql
4
steel manual-automated
4
manual-automated mag
4
mag technique-a
4

Similar Publications

Welding of S960QL High-Strength Steel by the Manual-Automated MAG Technique-A Study of Mechanical Properties, Residual Stresses and Fracture Mechanisms in the Heat-Affected Zone.

Materials (Basel)

November 2024

Institute of Robots & Machine Design, Faculty of Mechanical Engineering, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland.

This paper presents results of investigations of a V-type welded joint made of S960QL high-strength steel made using a mixed technique: the root was welded manually and the face automatically. Although high-strength steels have been available on the market for many years, they are still the subject of research due to their increasingly widespread usage. For this reason, detailed investigations of welded joints of S960QL steel were carried out in terms of microstructure, microhardness, impact toughness and residual stresses, in order to expand knowledge in this area.

View Article and Find Full Text PDF

In this paper, we presented the dataset values of full width at half maximum (FWHM) with errors at each point corresponding to the value of longitudinal and transverse residual stress along the three lines for 14 points measured in the EBW welded joints (S960QL and S960M) of the related article [1]. This dataset is used to plot figures and describes their correspondence points with the interrelation of the residual stress graphs (Fig. 4) of the article [1].

View Article and Find Full Text PDF

Dry machining is one of the main ways to reduce the environmental burden of the machining process and reduce the negative effect of the cutting fluid and aerosols on operators. In addition, dry machining can reduce overall machining costs and, in the case of large workpieces, reduce the extra work associated with removing residual cutting fluid from the workpiece and adjacent area. For high-strength structural steel products, it is typical to drill holes with larger diameters of around 20 mm.

View Article and Find Full Text PDF

A combined experimental numerical approach is applied to determine the transformation induced plasticity (TRIP)-parameter K for different strength low-alloy steels of grade S355J2+N and S960QL as well as the super martensitic filler CN13-4-IG containing 13 wt% chromium and 4 wt% nickel. The thermo-physical analyses were conducted using a Gleeble (®) 3500 facility. The thermal histories of the specimens to be tested were extracted from corresponding simulations of a real gas metal arc weldment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!