Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates. Plants have so far developed two main mechanisms for unloading sugars (sucrose) towards sink organs, a symplasmic pathway and an apoplasmic pathway, but so far limited investigations have been reported about the modes of sugar uptake during the transition from the dormant to the active outgrowth state of the bud. The available data indicate that the switch from dormant bud to active outgrowing state, requires sugar and is shortly preceded by an increase in bud metabolic activity and a remobilization of the stem starch reserves in favor of growing buds. This activation of the bud sink strength is accompanied by an up-regulation of the main markers of apoplasmic unloading, such as sugar transporters (sucrose transporters-SUTs; sugar will eventually be exported transporters-SWEETs), sucrose hydrolyzing enzymes (cell wall invertase-CWINV) and sugar metabolic pathways (glycolysis/tricarboxylic cycle-TCA; oxidative pentose phosphate pathway-OPPP). As these results are limited to a few species, they are not sufficient to provide a complete and accurate picture of the mode(s) of sugar unloading toward axillary buds and deserve to be complemented by additional studies in a wide variety of plants using systems integration, combining genetic, molecular and immunolocalization approaches. Altogether, we discuss here how sugar is a systemic regulator of shoot branching, acting both as an energy-rich molecule and a signaling entity in the establishment of the bud sink strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms252313214 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11641904 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!