AI Article Synopsis

  • Microglial activation has been linked to neurodegenerative diseases like Alzheimer's and Parkinson's, but its role in metabolic disorders, particularly insulin resistance and type 2 diabetes, is gaining attention.
  • The text examines the biochemical pathways involved in this connection, including IKKβ/NF-κβ and IRS-1/PI3K/Akt, as well as the impact of non-coding RNAs on insulin resistance.
  • Finally, potential therapeutic strategies, both pharmaceutical and lifestyle-based, are discussed to reduce microglial activation and mitigate its effects on metabolism.

Article Abstract

Historically, microglial activation has been associated with diseases of a neurodegenerative and neuroinflammatory nature. Some, like Alzheimer's disease, Parkinson's disease, and multiple system atrophy, have been explored extensively, while others pertaining to metabolism not so much. However, emerging evidence points to hypothalamic inflammation mediated by microglia as a driver of metabolic dysregulations, particularly insulin resistance and type 2 diabetes mellitus. Here, we explore this connection further and examine pathways that underlie this relationship, including the IKKβ/NF-κβ, IRS-1/PI3K/Akt, mTOR-S6 Kinase, JAK/STAT, and PPAR-γ signaling pathways. We also investigate the role of non-coding RNAs, namely microRNAs and long non-coding RNAs, in insulin resistance related to neuroinflammation and their diagnostic and therapeutic potential. Finally, we explore therapeutics further, searching for both pharmacological and non-pharmacological interventions that can help mitigate microglial activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642714PMC
http://dx.doi.org/10.3390/ijms252313169DOI Listing

Publication Analysis

Top Keywords

insulin resistance
12
resistance type
8
type diabetes
8
microglial activation
8
non-coding rnas
8
role hypothalamic
4
hypothalamic microglia
4
microglia onset
4
onset insulin
4
diabetes neuro-immune
4

Similar Publications

Aims: Contrast-induced nephropathy (CIN) is a condition characterized by rapidly decreasing renal funciton following by the application of contrast material. Precutaneous coronary intervention (PCI) is a life-saving treatment method that should be applied under emergent conditions. Unfortunately, the incidence of CIN after PCI is common.

View Article and Find Full Text PDF

Cachexia is a multifactorial metabolic syndrome characterized by weight and skeletal muscle loss caused by underlying illnesses such as cancer, heart failure, and renal failure. Inflammation, insulin resistance, increased muscle protein degradation, decreased food intake, and anorexia are the primary pathophysiological drivers of cachexia. Cachexia causes physical deterioration and functional impairment, loss of quality of life, lower response to active treatment, and ultimately morbidity and mortality, while the difficulties in tackling cachexia in its advanced phases and the heterogeneity of the syndrome among patients require an individualized and multidisciplinary approach from an early stage.

View Article and Find Full Text PDF

Background: To investigate the association between metabolic dysfunction-associated steatotic pancreas disease (MASPD) and insulin resistance (IR).

Methods: This cross-sectional study involved 157 participants diagnosed with MASPD based on ultrasonography criteria. Baseline demographic data were collected, including age, gender, and body mass index.

View Article and Find Full Text PDF

: This study explores the impact of brown rice bran powder (BRBP), known for its beneficial components, such as dietary fiber and γ-oryzanol, on individuals suffering from metabolic syndrome (MetS). /: In this eight-week open-label controlled trial, fifty participants with MetS were randomly assigned to either a control group, which received a standard diet (SDiet), or an intervention group, which incorporated 15 grams of BRBP daily into their diet. Demographic, anthropometric and clinical data were collected, and blood samples were taken to assess metabolic factors and antioxidant enzyme activities.

View Article and Find Full Text PDF

Association Between Circulating Fatty Acids and Blood Pressure: A Review.

Curr Nutr Rep

January 2025

Endocrinology and Nephrology Research Axis, CHU de Québec Research Center, CHU of Quebec-Laval University, CHUL - 2705, Boulevard. Laurier, Quebec, G1V 4G2, Canada.

Purpose Of Review: High blood pressure (BP) or hypertension (HTN) remains key risk factors for cardiovascular disease (CVD). Circulating fatty acids (FAs) in the blood can affect directly cardiovascular hemodynamics and serves as building blocks for endocrine mediators modifying inflammatory processes and vascular function. This review aims to describe optimal circulating FA profiles for BP to adjust dietary recommendations for HTN prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!