Wound healing as a result of a skin injury involves a series of dynamic physiological processes, leading to wound closure, re-epithelialization, and the remodeling of the extracellular matrix (ECM). The primary scar formed by the new ECM never fully regains the original tissue's strength or flexibility. Moreover, in some cases, due to dysregulated fibroblast activity, proliferation, and differentiation, the normal scarring can be replaced by pathological fibrotic tissue, leading to hypertrophic scars or keloids. These disorders can cause significant physical impairment and psychological stress and represent significant challenges in medical management in the wound-healing process. The present study aimed to investigate the therapeutic effects of exogenously applied carbon dioxide (CO) on fibroblast behavior, focusing on viability, proliferation, migration, and differentiation to myofibroblasts. We found that CO exposure for up to 60 min did not significantly affect fibroblast viability, apoptosis rate, or proliferation and migration capacities. However, a notable finding was the significant reduction in α-smooth muscle actin (α-SMA) protein expression, indicative of myofibroblast differentiation inhibition, following CO exposure. This effect was specific to CO and concentration as well as time-dependent, with longer exposure durations leading to greater reductions in α-SMA expression. Furthermore, the inhibition of myofibroblast differentiation correlated with a statistically significantly reduced glycolytic and mitochondrial energy metabolism, and as a result, with a reduced ATP synthesis rate. This very noticeable decrease in cellular energy levels seemed to be specific to CO exposure and could not be observed in the control cultures using nitrogen (N)-saturated solutions, indicating a unique and hypoxia-independent effect of CO on fibroblast metabolism. These findings suggest that exogenously applied CO may possess fibroblast differentiation-reducing properties by modulating fibroblast's energy metabolism and could offer new therapeutic options in the prevention of scar and keloid development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11641328PMC
http://dx.doi.org/10.3390/ijms252313013DOI Listing

Publication Analysis

Top Keywords

myofibroblast differentiation
12
exogenously applied
8
proliferation migration
8
energy metabolism
8
exposure
5
differentiation
5
fibroblast
5
exposure primary
4
primary human
4
human skin
4

Similar Publications

Prevention of radiotherapy-induced pro-tumorigenic microenvironment by SFK inhibitors.

Theranostics

January 2025

College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.

Radiotherapy is a widely employed technique for eradication of tumor using high-energy beams, and has been applied to approximately 50% of all solid tumor patients. However, its non-specific, cell-killing property leads to inevitable damage to surrounding normal tissues. Recent findings suggest that radiotherapy-induced tissue damage contributes to the formation of a pro-tumorigenic microenvironment.

View Article and Find Full Text PDF

L. (AE) has a rich tradition of use in wound healing improvement across various cultures worldwide. In previous studies, we revealed that L.

View Article and Find Full Text PDF

Background: Liver fibrosis is caused by chronic toxic or cholestatic liver injury. Fibrosis results from the recruitment of myeloid cells into the injured liver, the release of inflammatory and fibrogenic cytokines, and the activation of myofibroblasts, which secrete extracellular matrix, mostly collagen type I. Hepatic myofibroblasts originate from liver-resident mesenchymal cells, including HSCs and bone marrow-derived CD45+ collagen type I+ expressing fibrocytes.

View Article and Find Full Text PDF
Article Synopsis
  • This research explores the activation of hepatic stellate cells (HSCs) across different types of chronic liver disease (CLD), finding that their activation follows similar mechanisms regardless of the injury type.
  • A single-cell RNA-sequencing atlas was created to categorize HSCs into three profiles: quiescent, initiatory, and myofibroblasts, indicating consistent activation patterns in both mice and humans.
  • The study highlights key transcription factors and novel ligands involved in HSC activation, paving the way for new insights and potential treatments for liver fibrosis.
View Article and Find Full Text PDF

Extravillous trophoblasts reverse the decidualization induced increase in matrix production by secreting TGFβ antagonists Emilin-1 and Gremlin-1.

Cells Dev

January 2025

Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, United States of America; Jackson Laboratory, Farmington, CT, United States of America. Electronic address:

The maternal-fetal interface has long been considered as a frontier for an evolutionary arms race due to the close juxtaposition of genetically distinct tissues. In hemochorial species with deep placental invasion, including in humans, maternal stroma prepares its defenses against deep trophoblast invasion by decidualization, a differentiation process characterized by increased stromal cell matrix production, and contractile force generation. Decidualization has evolved from an ancestral wound healing response of fibroblast activation by the endometrial stroma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!