The ability of a cold-shock protein CspD from to protect both dicots and monocots against various pathogens is well confirmed under both greenhouse and field conditions; however, the molecular basis of this phenomenon at the transcriptomic level still remains unexplored. Expression profiles of some marker genes associated with SAR/ISR nonspecific resistance pathways and ROS scavengers were examined in CspD-treated plants, and the RNA-seq analysis of CspD-treated plants was first carried out. The ISR markers PDF1.2 and PR4 were overexpressed locally in treated tobacco leaves with the maximum 2.4- and 5.7-fold change, respectively, reached 12 h after the leaf treatment with CspD; PDF1.2 was also up-regulated 4.8-fold four days after the inoculation of treated plants with TMV. The ROS scavenger analysis demonstrated overexpression of Cu-Zn superoxide dismutase in both treated (with the maximum 5.4-fold change observed 6 h after the treatment) leaves and leaves from the upper tier ("system" leaves, 6.5-fold change observed 4 days after the treatment). The ROS assay confirmed endogenous accumulation of superoxide in CspD-treated leaves 6 and 24 h after the treatment. An in silico comparative study of orthologs of highly up-regulated tobacco genes induced by CspD with genes activated by some other molecular patterns revealed the specific CspD-induced expression of Cu-Zn superoxide dismutase and some other genes associated with light and cold responses. This study may contribute to a better understanding of cross-talking between abiotic stress and nonspecific immunity in plants.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms252313015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11641646PMC

Publication Analysis

Top Keywords

protein cspd
8
abiotic stress
8
genes associated
8
cspd-treated plants
8
cu-zn superoxide
8
superoxide dismutase
8
change observed
8
leaves
5
transcriptomic study
4
treated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!