We demonstrate the band gap programming of inverse opals by fabrication of different wall thickness by atomic layer deposition (ALD). The opal templates were synthesized using polystyrene and carbon nanospheres by the vertical deposition method. The structure and properties of the TiO inverse opal samples were investigated using Scanning Electron Microscope (SEM) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction (XRD) and Finite Difference Time Domain (FDTD) simulations. The photonic properties can be well detected by UV-Vis reflectance spectroscopy, while diffuse reflectance spectroscopy appears to be less sensitive. The samples showed visible light photocatalytic properties using Raman microscopy and UV-Visible spectrophotometry, and a newly developed digital photography-based detection method to track dye degradation. In our work, we stretch the boundaries of a working inverse opal to make it commercially more available while avoiding fully filling and using cheaper, but lower-quality, carbon nanosphere sacrificial templates.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms252312996DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11641796PMC

Publication Analysis

Top Keywords

inverse opal
12
band gap
8
wall thickness
8
scanning electron
8
reflectance spectroscopy
8
photonic band
4
gap engineering
4
engineering varying
4
inverse
4
varying inverse
4

Similar Publications

Cyclin-dependent kinase 4/6 inhibitors (CDKIs) in combination with endocrine therapy (ET) are the standard-of-care in the first-line treatment of HR-positive, HER2-negative metastatic breast cancer. In the absence of direct head-to-head trials comparing the efficacy and safety of the different CDKIs, the individual choice of treatment in everyday practice is complex. Inverse probability of treatment weighting was used to emulate a head-to-head comparison of palbociclib +ET (PALBO) and ribociclib +ET (RIBO) in patients recruited into the prospective, observational, multicenter registry platform OPAL (NCT03417115).

View Article and Find Full Text PDF

Multiphase Janus Azobenzene Inverse Opal Membrane toward On-Demand Photocontrolled Motion.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Azobenzene actuators have generated extensive research investment in the field of soft robots, artificial muscles, etc., based on the typical photoresponsive - isomerization. However, it remains challenging to achieve multiphase actuation at the gas-liquid interface and liquid phase.

View Article and Find Full Text PDF

Improving Visible Light Photocatalysis Using Optical Defects in CoO-TiO Photonic Crystals.

Materials (Basel)

December 2024

Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.

The rational design of photonic crystal photocatalysts has attracted significant interest in order to improve their light harvesting and photocatalytic performances. In this work, an advanced approach to enhance slow light propagation and visible light photocatalysis is demonstrated for the first time by integrating a planar defect into CoO-TiO inverse opals. Trilayer photonic crystal films were fabricated through the successive deposition of an inverse opal TiO underlayer, a thin titania interlayer, and a photonic top layer, whose visible light activation was implemented through surface modification with CoO nanoscale complexes.

View Article and Find Full Text PDF

Photonic Band Gap Engineering by Varying the Inverse Opal Wall Thickness.

Int J Mol Sci

December 2024

Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary.

We demonstrate the band gap programming of inverse opals by fabrication of different wall thickness by atomic layer deposition (ALD). The opal templates were synthesized using polystyrene and carbon nanospheres by the vertical deposition method. The structure and properties of the TiO inverse opal samples were investigated using Scanning Electron Microscope (SEM) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction (XRD) and Finite Difference Time Domain (FDTD) simulations.

View Article and Find Full Text PDF

Dynamic Modulation of Afterglow Emission in Polymeric Phosphors via Inverse Opal Photonic Structures.

Adv Mater

December 2024

Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.

Tuning the afterglow of polymeric phosphors is critical for advancing their use in optical data storage and display technologies. Despite advancements in polymer matrix design and dopant engineering, achieving dynamic control over afterglow intensity remains a significant challenge. In this study, a novel approach is introduced for dynamically tuning the afterglow of polymeric phosphors by integrating them into an inverse opal photonic structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!