Fucoxanthin (FN), a carotenoid derived from brown seaweed and algae, offers significant health benefits. However, its unique structure leads to challenges in stability and bioavailability. To overcome these issues, we successfully encapsulated fucoxanthin in solid lipid nanoparticles (SLNs) utilizing health-safe materials, achieving remarkable results. SLNs exhibited a nanoscale size of 248.98 ± 4.0 nm, along with an impressive encapsulation efficiency of 98.30% ± 0.26% and a loading capacity of 5.48% ± 0.82% in lipid. The polydispersity index (PDI) was measured at 0.161 ± 0.03, indicating a narrow size distribution, while the high negative zeta potential of -32.93 ± 1.2 mV suggests excellent stability. Pharmacokinetic studies conducted in Sprague-Dawley rats revealed an exceptional oral bioavailability of 2723.16% compared to fucoxanthin crystals, likely attributed to the enhanced stability and improved cellular uptake of the SLNs. To further improve bioavailability, we creatively applied enteric coatings to the freeze-dried SLNs, effectively protecting fucoxanthin from gastric degradation, which is supported by in vitro digestion results. These findings underscore the potential of SLNs as a superior delivery system for fucoxanthin, significantly enhancing its therapeutic efficacy and broadening its application in the food and pharmaceutical industries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11641657PMC
http://dx.doi.org/10.3390/ijms252312825DOI Listing

Publication Analysis

Top Keywords

solid lipid
8
lipid nanoparticles
8
fucoxanthin
6
slns
5
innovative approaches
4
approaches fucoxanthin
4
fucoxanthin delivery
4
delivery characterization
4
bioavailability
4
characterization bioavailability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!