Fucoxanthin (FN), a carotenoid derived from brown seaweed and algae, offers significant health benefits. However, its unique structure leads to challenges in stability and bioavailability. To overcome these issues, we successfully encapsulated fucoxanthin in solid lipid nanoparticles (SLNs) utilizing health-safe materials, achieving remarkable results. SLNs exhibited a nanoscale size of 248.98 ± 4.0 nm, along with an impressive encapsulation efficiency of 98.30% ± 0.26% and a loading capacity of 5.48% ± 0.82% in lipid. The polydispersity index (PDI) was measured at 0.161 ± 0.03, indicating a narrow size distribution, while the high negative zeta potential of -32.93 ± 1.2 mV suggests excellent stability. Pharmacokinetic studies conducted in Sprague-Dawley rats revealed an exceptional oral bioavailability of 2723.16% compared to fucoxanthin crystals, likely attributed to the enhanced stability and improved cellular uptake of the SLNs. To further improve bioavailability, we creatively applied enteric coatings to the freeze-dried SLNs, effectively protecting fucoxanthin from gastric degradation, which is supported by in vitro digestion results. These findings underscore the potential of SLNs as a superior delivery system for fucoxanthin, significantly enhancing its therapeutic efficacy and broadening its application in the food and pharmaceutical industries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11641657 | PMC |
http://dx.doi.org/10.3390/ijms252312825 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!