Roles of 4'--Methylalpinum Isoflavone on Activation of Microglia Induced by Oxysterols.

Int J Mol Sci

Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea.

Published: November 2024

Microglia play a crucial role as immune cells responsible for the brain's defense mechanisms. Similar to the actions of macrophages in the body, microglial cells elicit an inflammatory immune response in the brain. Recent papers highlight activated microglial cells as pivotal contributors to inflammatory responses in the brain, leading to damage to nerve tissue and the onset of Alzheimer's disease (AD). In the brains of AD patients, elevated levels of inflammatory cytokines such as interleukin-6 (IL-6) and oxidized cholesterol metabolites (oxysterols) are observed. These factors are closely associated with inflammatory diseases in the brain. 4'--Methylalpinum isoflavone (mAI), derived from fruit, possesses antioxidant, neuroprotective, and anti-inflammatory properties. Consequently, this study examined the effect of mAI on the expression of IL-6, a major inflammatory cytokine. The HMC3 microglial cell line was treated with oxysterols to assess the effectiveness of mAI in mitigating this inflammatory response. The results indicated that mAI inhibited the gene expression and protein secretion of IL-6 induced by 25-hydroxycholesterol (25OHChol) and 27-hydroxycholesterol (27OHChol). Furthermore, the expression of MHC class II, a marker for microglial activation, was reduced to baseline levels. These findings suggest that mAI may serve as a viable option for suppressing and treating brain inflammatory diseases induced by cholesterol oxidation products. This is achieved by curtailing the expression of the inflammatory cytokine resulting from the activation of microglial cells by immuno-oxysterol.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms252312743DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11641445PMC

Publication Analysis

Top Keywords

microglial cells
12
4'--methylalpinum isoflavone
8
inflammatory
8
inflammatory diseases
8
inflammatory cytokine
8
microglial
5
mai
5
roles 4'--methylalpinum
4
isoflavone activation
4
activation microglia
4

Similar Publications

Multiple Sclerosis (MS), a neuroinflammatory disease of the central nervous system, is one of the commonest causes of non-traumatic disability among young adults. Impaired cognition arises as an impactful symptom affecting more than 50% of the patients and with substantial impact on social, economic, and individual wellbeing. Despite the lack of therapeutic strategies, many efforts have been made to understand the mechanisms behind cognitive impairment in MS patients.

View Article and Find Full Text PDF

Demyelination-derived lysophosphatidylserine promotes microglial dysfunction and neuropathology in a mouse model of Alzheimer's disease.

Cell Mol Immunol

January 2025

Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.

Microglia dysfunction-associated neuroinflammation is an important driver of Alzheimer's disease (AD), but the mechanism is poorly understood. Here, we show that demyelination promotes neuroinflammation and cognitive impairment via the lysophosphatidylserine (LysoPS)-GPR34 axis in AD. Demyelination is observed at the early stage and is accompanied by an increase in LysoPS in myelin debris in a 5xFAD mouse model of AD.

View Article and Find Full Text PDF

Anti-Aβ immunotherapy use to treat Alzheimer's disease is on the rise. While anti-Aβ antibodies provide hope in targeting Aβ plaques in the brain there still remains a lack of understanding regarding the cellular responses to these antibodies in the brain. In this study we sought to identify acute effects of anti-Aβ antibody on immune responses.

View Article and Find Full Text PDF

A Comprehensive Review of Arsenic-Induced Neurotoxicity: Exploring the Role of Glial Cell Pathways and Mechanisms.

Chemosphere

December 2024

Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

The review aims to examine the neurotoxic effects of arsenic, particularly exploring the roles of glial cells-astrocytes, microglia, and oligodendrocytes, amid its widespread environmental contamination and impact on cognitive impairments. It highlights the role of altered neurotrophin and growth factor signaling in disrupting neuronal health and cognitive performance. It elucidates the intricate interactions between oxidative stress, DNA damage, neurotransmitter disruption, and cellular signaling alterations, underscoring the vital importance of the glial cells.

View Article and Find Full Text PDF

Heme oxygenase 1 (HO-1), an enzyme involved in heme catabolism, has been shown upregulated in microglia cells and plays a critical roles in neurological damages after intracerebral hemorrhage (ICH). However, the mechanisms by which HO-1 mediates the neuronal damages are still obscure. Here, our findings demonstrate that HO-1 over-expression exacerbates the pro-inflammatory response of microglia and induces neuronal ferroptosis through promoting intracellular iron deposition in the ICH model both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!