Primes a Multilayered Transcriptional Defense Response to the Nematode spp. in Tomato.

Int J Mol Sci

Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia.

Published: November 2024

AI Article Synopsis

  • Meloidogyne nematodes cause significant damage to crops like tomatoes, while certain beneficial bacteria can help protect plants from various pathogens.
  • The study focused on understanding the molecular responses in tomato plants to the nematode and bacteria, using RNA sequencing to analyze how the plants reacted to each agent individually and together.
  • Results showed that many more genes were activated than repressed, particularly those related to defense mechanisms, lipid metabolism, and carbohydrate processing, indicating a strong defense response in the plants, especially when both microorganisms were present.

Article Abstract

Meloidogyne causes a devastating disease known as root-knot that affects tomatoes and other cash crops worldwide. Conversely, has proven beneficial in mitigating the effects of various pathogens in plants. We aimed to unravel the molecular events that underlie the beneficial effects of the bacterium and the detrimental impacts of the nematode when inoculated separately or together in tomato plants. The transcriptional responses induced by (TB group (tomato-bacteria group)), spp. (TN group (tomato-nematode group)) or by the two agents (TBN group (tomato-bacteria-nematode group)) in tomato were assessed by RNA-seq. We implemented a transcript discovery pipeline which allowed the identification of 2283 putative novel transcripts. Differential expression analysis revealed that upregulated transcripts were much more numerous than downregulated ones. At the gene ontology level, the most activated term was 'hydrolase activity acting on ester bonds' in all groups. In addition, when both microbes were inoculated together, 'hydrolase activity acting on O-glycosyl compounds' was activated. This finding suggests defense responses related to lipid and carbohydrate metabolism, membrane remodeling and signal transduction. Notably, defense genes, transcription factors and protein kinases stood out. Differentially expressed transcripts suggest the activation of a multifaceted plant defense response against the nematode occurred, which was exacerbated by pre-inoculation of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11641443PMC
http://dx.doi.org/10.3390/ijms252312584DOI Listing

Publication Analysis

Top Keywords

defense response
8
response nematode
8
'hydrolase activity
8
activity acting
8
group
6
primes multilayered
4
multilayered transcriptional
4
defense
4
transcriptional defense
4
nematode spp
4

Similar Publications

Monitoring of cancer ferroptosis with [F]hGTS13, a system xc- specific radiotracer.

Theranostics

January 2025

Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

Introduction: The grayling ( L.) has several advantages over other fish species that make it attractive for aquaculture and invest it with importance for food security. The study assessed the effects of a β-glucan-enriched diet on biomarkers of oxidative stress, energy metabolism and lysosomal function in muscle tissue of European grayling ( L.

View Article and Find Full Text PDF

Breaking the cellular defense: the role of autophagy evasion in virulence.

Front Cell Infect Microbiol

December 2024

Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia.

Many pathogens have evolved sophisticated strategies to evade autophagy, a crucial cellular defense mechanism that typically targets and degrades invading microorganisms. By subverting or inhibiting autophagy, these pathogens can create a more favorable environment for their replication and survival within the host. For instance, some bacteria secrete factors that block autophagosome formation, while others might escape from autophagosomes before degradation.

View Article and Find Full Text PDF

Uncovering selection pressures on the IRF gene family in bats' immune system.

Immunogenetics

January 2025

Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Químicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, C.P. 11340, Ciudad de México, Mexico.

Unlike other mammals, bats serve as natural reservoirs for several highly pathogenic viruses without exhibiting symptoms of infection. Recent research has explored the complex mechanisms underlying the balance between bats' antiviral defenses and their pathological responses. However, the evolution of the molecular drivers behind bats' antiviral strategies remains largely unknown.

View Article and Find Full Text PDF

Mutant Calreticulin in MPN: Mechanistic Insights and Therapeutic Implications.

Curr Hematol Malig Rep

January 2025

Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Purpose Of Review: More than a decade following the discovery of Calreticulin (CALR) mutations as drivers of myeloproliferative neoplasms (MPN), advances in the understanding of CALR-mutant MPN continue to emerge. Here, we summarize recent advances in mehanistic understanding and in targeted therapies for CALR-mutant MPN.

Recent Findings: Structural insights revealed that the mutant CALR-MPL complex is a tetramer and the mutant CALR C-terminus is exposed on the cell surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!