Increasing environmental awareness has boosted interest in sustainable alternatives for binding natural reinforcing fibers in composites. Utilizing lignin, a biorenewable polymer byproduct from several industries, as a component in polymer matrices can lead to the development of more eco-friendly and high-performance composite materials. This research work aimed to investigate the effect of two types of lignin (lignosulfonate and soda lignin) on the properties of hemp fiber-reinforced polypropylene composites for furniture applications. The composites were produced by thermoforming six overlapping layers of nonwoven material. A 20% addition of soda lignin or lignosulfonate (relative to the nonwoven mass) was incorporated between the nonwoven layers made of 80% hemp and 20% polypropylene (PP). The addition of both types of lignin resulted in an increase in the tensile and bending strength of lignin-based composites, as well as a decrease in the absorbed water percentage. Compared to oriented strand board (OSB), lignin-based composites exhibited better properties. Regarding the two types of lignin used, the addition of lignosulfonate resulted in better composite properties than those containing soda lignin. Thermal analysis revealed that the thermal degradation of soda lignin begins long before the melting temperature of polypropylene. This early degradation explains the inferior properties of the composites containing soda lignin compared to those with lignosulfonate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/polym16233442 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644370 | PMC |
Gels
December 2024
Institute for Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany.
This study explores the innovative potential of native lignin as a sustainable biopolyol for synthesizing polyurethane aerogels with variable microstructures, significant specific surface areas, and high mechanical stability. Three types of lignin-Organosolv, Aquasolv, and Soda lignin-were evaluated based on structural characteristics, Klason lignin content, and particle size, with Organosolv lignin being identified as the optimal candidate. The microstructure of lignin polyurethane samples was adjustable by solvent choice: Gelation in DMSO and pyridine, with high affinity to lignin, resulted in dense materials with low specific surface areas, while the use of the low-affinity solvent e.
View Article and Find Full Text PDFData Brief
December 2024
RISE PFI AS, Høgskoleringen 6B, 7491 Trondheim, Norway.
This data article summarizes the material properties of some added-lignin thermoformed pulps (ALTPs). This type of molded pulp is particularly suited for replacing plastics in environments, where moisture is encountered, as the lignin reduces the transport and adsorption of water. The dataset was measured on wet formed substrates with either softwood chemi-thermomechanical pulp (CTMP) or northern bleached softwood Kraft pulp (NBSK).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia. Electronic address:
The development of eco-friendly wood adhesives have gained more interest among adhesives industries due to the concerns about using carcinogenic formaldehyde and petroleum-based phenol in commercially available adhesives. Therefore, many studies have been done by using lignin to partially replace phenol and completely substitute formaldehyde with non-toxic glyoxal in a wood adhesive formulation. This study focused on using different percentages of lignin substitution (10 %, 30 % and 50 wt%) of alkaline and organosolv coconut husk lignin into soda lignin-phenol-glyoxal (SLPG), Kraft lignin-phenol-glyoxal (KLPG) and organosolv lignin-phenol-glyoxal (OLPG) adhesives.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Core Facility Center "Arktika" Northern (Arctic) Federal University named after M.V. Lomonosov, Northern Dvina Emb., 17, Arkhangelsk 163002, Russia. Electronic address:
The widespread development of lignin valorization is hindered by a number of challenges. In particular, efficient valorization necessitates comprehensive characterization of initial lignins. In this work, the structural features of lignins from birch wood (Bétula péndula), obtained by various methods of hard and mild fractionation of biomass: hydrolysis (Hyd-L), kraft (Kraft-L), soda (Soda-L), and soda-ethanol (SodaEt-L) processes, as well as organosolv processes with dioxane (MWL, DL) and dimethyl sulfoxide (DMSO-L) have been comprehensively studied.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Industrial Design and Business Management, "Gheorghe Asachi" Technical University of Iasi, 29 Prof. Dr. Doc. D. Mangeron Blvd, 700050 Iasi, Romania.
Increasing environmental awareness has boosted interest in sustainable alternatives for binding natural reinforcing fibers in composites. Utilizing lignin, a biorenewable polymer byproduct from several industries, as a component in polymer matrices can lead to the development of more eco-friendly and high-performance composite materials. This research work aimed to investigate the effect of two types of lignin (lignosulfonate and soda lignin) on the properties of hemp fiber-reinforced polypropylene composites for furniture applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!