The stages of solid-state processing of nanocomposites, based on nascent disentangled ultra-high-molecular-weight polyethylene (d-UHMWPE) reactor powders (RPs) and carbon nanoparticles (NPs) of various types, were meticulously investigated. The potential for optimizing the filler distribution through variation of the processing parameters, and the impact of the d-UHMWPE RP and nanofiller type on the electrical conductivity of the resulting composites were discussed. The specifics of the dependences of conductivity and tensile strength on the deformation ratio for the composites, oriented under homogeneous shear conditions, were investigated. The obtained results and the results on piezoresistivity and temperature dependency of conductivity in the oriented and compacted composites demonstrated the independence of the UHMWPE matrix orientational strengthening on the filling. The interchangeability of high-temperature uniaxial deformation and deformation under homogeneous conditions for orientational strengthening and electrical conductivity changes in the preliminary oriented composite samples was confirmed. The potential for simultaneously achieving high strength and conductivity in composite tapes and the possibility of directly processing d-UHMWPE RP and NPs mixtures into oriented composite tapes were demonstrated. The overall results suggest that the studied composites may serve as a viable model system for investigating the deformational behavior of conductive networks comprising NPs of varying types and contents.

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym16233423DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644357PMC

Publication Analysis

Top Keywords

nanocomposites based
8
solid-state processing
8
electrical conductivity
8
orientational strengthening
8
oriented composite
8
composite tapes
8
conductivity
5
based disentangled
4
disentangled ultra-high
4
ultra-high molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!