A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of an Analytical Model for Predicting the Tensile Modulus of Complex Polypropylene Compounds. | LitMetric

The extensive use of polypropylene (PP) in various industries necessitates the development of efficient and reliable methods for predicting the mechanical properties of PP compounds. This study presents the development of an analytical model (AM) designed to predict the tensile modulus for a dataset of 64 PP compounds with various fillers and additives, including chalk, impact strength modifiers, and peroxide additives. The AM, incorporating both logarithmic and linear components, was benchmarked against an artificial neural network (ANN) to evaluate its performance. The results demonstrate that the AM consistently outperforms the ANN, achieving lower mean absolute error (MAE) and higher coefficient of determination (R) values. A maximum R of 0.98 could be achieved in predicting the tensile modulus. The simplicity and robustness of the AM with its 14 fitting parameters compared to the ~1300 parameters of the ANN make it a useful tool for the plastics industry, providing a practical approach to optimising compound formulations with minimal empirical testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644246PMC
http://dx.doi.org/10.3390/polym16233403DOI Listing

Publication Analysis

Top Keywords

tensile modulus
12
development analytical
8
analytical model
8
predicting tensile
8
model predicting
4
modulus complex
4
complex polypropylene
4
polypropylene compounds
4
compounds extensive
4
extensive polypropylene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!